Самый тугоплавкий металл на земле. Самый тугоплавкий металл Самая большая температура плавления металла

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым – меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Вольфрам

Самая высокая температура плавления – у металла вольфрама. Выше него по этому показателю стоит только неметалл углерод. Вольфрам представляет собой светло-серое блестящее вещество, очень плотное и тяжелое. Он кипит при 5555 °C, что почти приравнивается к температуре фотосферы Солнца.

При комнатных условиях он слабо реагирует с кислородом и не подвергается коррозии. Несмотря на свою тугоплавкость, он довольно пластичен и поддается ковке уже при нагревании до 1600 °C. Эти свойства вольфрама используют для нитей накаливания в лампах и кинескопах электродов для сварки. Большую часть добытого металла сплавляют со сталью, чтобы повысить ее прочность и твердость.

Широкое применение вольфрам имеет в военной сфере и технике. Он незаменим для изготовления боеприпасов, брони, двигателей и наиболее важных частей военного транспорта и самолетов. Из него также делают хирургические инструменты, ящики для хранения радиоактивных веществ.

Ртуть

Ртуть – единственный металл, температура плавления которого имеет минусовое значение. К тому же это один из двух химических элементов, простые вещества которых при нормальных условиях, существуют в виде жидкостей. Интересно, что кипит металл при нагревании до 356,73 °C, а это намного выше температуры его плавления.

Имеет серебристо-белый цвет и ярко выраженный блеск. Она испаряется уже при комнатных условиях, конденсируясь в небольшие шарики. Металл очень токсичен. Он способен накапливается во внутренних органах человека, вызывая болезни головного мозга, селезенки, почек и печени.

Ртуть – один из семи первых металлов, о которых узнал человек. В Средние века она считалась главным алхимическим элементом. Несмотря на ядовитость, когда-то ее применяли в медицине в составе зубных пломб, а также как лекарство от сифилиса. Сейчас ртуть почти полностью исключили из медицинских препаратов, но широко используют ее в измерительных приборах (барометрах, манометрах), для изготовления ламп, переключателей, дверных звонков.

Сплавы

Чтобы изменить свойства того или иного металла, его сплавляют с другими веществами. Так, он может не только приобрести большую плотность, прочность, но и снизить или повысить температуру плавления.

Сплав может состоять из двух или больше химических элементов, но хотя бы один из них должен быть металлом. Такие «смеси» очень часто используют в промышленности, ведь они позволяют получить именно те качества материалов, которые необходимы.

Температура плавления металлов и сплавов зависит от чистоты первых, а также от пропорций и состава вторых. Для получения легкоплавких сплавов чаще всего используют свинец, ртуть, таллий, олово, кадмий, индий. Те, в составе которых находится ртуть, называются амальгамами. Соединение натрия, калия и цезия в соотношении 12%/47%/41% становится жидкостью уже при минус 78 °C , амальгама ртути и таллия – при минус 61°C. Самым тугоплавким материалом является сплав тантала и карбидов гафния в пропорциях 1:1 с температурой плавления 4115 °C.

www.syl.ru

Наиболее тугоплавкий металл. Характеристика металлов

Металлы – это самый распространенный материал (наряду с пластмассами и стеклом), который применяется людьми с древних времен. Уже тогда человеку была известна характеристика металлов, он с выгодой использовал все их свойства для создания прекрасных произведений искусства, посуды, предметов быта, сооружений.

Одной из главных черт при рассмотрении этих веществ является их твердость и тугоплавкость. Именно эти качества позволяют определять область использования того или иного металла. Поэтому рассмотрим все физические свойства и особое внимание уделим вопросам плавкости.

Физические свойства металлов

Характеристика металлов по физическим свойствам может быть выражена в виде четырех основных пунктов.

  1. Металлический блеск – все имеют примерно одинаковый серебристо-белый красивый характерный блеск, кроме меди и золота. Они имеют красноватый и желтый отлив соответственно. Кальций – серебристо-голубой.
  2. Агрегатное состояние – все твердые при обычных условиях, кроме ртути, которая находится в виде жидкости.
  3. Электро- и теплопроводность – характерна для всех металлов, однако выражена в разной степени.
  4. Ковкость и пластичность – также общий для всех металлов параметр, который способен варьироваться в зависимости от конкретного представителя.
  5. Температура плавления и кипения – определяет, какой металл тугоплавкий, а какой легкоплавкий. Этот параметр разный для всех элементов.

Все физические свойства объясняются особым строением металлической кристаллической решетки. Ее пространственным расположением, формой и прочностью.

Легкоплавкие и тугоплавкие металлы

Данный параметр является очень важным, когда речь заходит об областях применения рассматриваемых веществ. Тугоплавкие металлы и сплавы – это основа машино- и кораблестроения, выплавки и литья многих важный изделий, получения качественного рабочего инструмента. Поэтому знание температур плавления и кипения играет основополагающую роль.

Характеризуя металлы по прочности, можно разделить их на твердые и хрупкие. Если же говорить о тугоплавкости, то здесь выделяют две основные группы:

  1. Легкоплавкие – это такие, которые способны менять агрегатное состояние при температурах ниже 1000 о С. Примерами могут служить: олово, свинец, ртуть, натрий, цезий, марганец, цинк, алюминий и другие.
  2. Тугоплавкими считаются те, чья температура плавления выше обозначенной величины. Их не так много, а на практике применяется еще меньше.

Таблица металлов, имеющих температуру плавления свыше 1000 о С, представлена ниже. Именно в ней и располагаются самые тугоплавкие представители.

Название металла Температура плавления, о С Температура кипения, о С
Золото, Au 1064.18 2856
Бериллий, Ве 1287 2471
Кобальт, Со 1495 2927
Хром, Cr 1907 2671
Медь, Cu 1084,62 2562
Железо, Fe 1538 2861
Гафний, Hf 2233 4603
Иридий, Ir 2446 4428
Марганец, Mn 1246 2061
Молибден, Мо 2623 4639
Ниобий, Nb 2477 4744
Никель, Ni 1455 2913
Палладий, Pd 1554,9 2963
Платина, Pt 1768.4 3825
Рений, Re 3186 5596
Родий, Rh 1964 3695
Рутений, Ru 2334 4150
Тантал, Та 3017 5458
Технеций, Тс 2157 4265
Торий, Th 1750 4788
Титан, Ti 1668 3287
Ванадий, V 1910 3407
Вольфрам, W 3422 5555
Цирконий, Zr 1855 4409

Данная таблица металлов включает в себя всех представителей, чья температура плавления выше 1000 о С. Однако на практике многие из них не применяются по различным причинам. Например, из-за экономической выгоды или вследствие радиоактивности, слишком высокой степени хрупкости, подверженности коррозионному воздействию.

Также из данных таблицы очевидно, что самый тугоплавкий металл в мире – это вольфрам. Наименьший показатель у золота. При работе с металлами важное значение имеет мягкость. Поэтому многие из обозначенных выше также не используются в технических целях.

Наиболее тугоплавкий металл – вольфрам

В периодической системе располагается под порядковым номером 74. Название получил по фамилии известного физика Стивена Вольфрама. При обычных условиях представляет собой твердый тугоплавкий металл серебристо-белого цвета. Обладает ярко выраженным металлическим блеском. Химически практически инертен, в реакции вступает неохотно.

В природе содержится в виде минералов:

  • вольфрамит;
  • шеелит;
  • гюбнерит;
  • ферберит.

Учеными было доказано, что вольфрам – наиболее тугоплавкий металл из всех существующих. Однако существуют предположения о том, что сиборгий теоретически способен побить рекорд этого металла. Но он является радиоактивным элементом с очень коротким периодом существования. Поэтому доказать это пока невозможно.

При определенной температуре (свыше 1500 о С) вольфрам становится ковким и пластичным. Поэтому возможно изготовление тонкой проволоки на его основе. Это свойство используется для изготовления нитей накаливания в обычных бытовых электрических лампочках.

Как наиболее тугоплавкий металл, выдерживающий температуры больше 3400 о С, вольфрам применяется в следующих областях техники:

  • как электрод при аргонной сварке;
  • для получения кислотоустойчивых, износостойких и жаростойких сплавов;
  • в качестве нагревательного элемента;
  • в вакуумных трубках как нить накаливания и прочее.

Помимо металлического вольфрама, широко применяются в технике, науке и электронике его соединения. Как самый тугоплавкий металл в мире он и соединения формирует с очень высококачественными характеристиками: прочные, устойчивые практически ко всем видам химического воздействия, не подвергающиеся коррозии, выдерживающие низкие и высокие температуры (победит, сульфид вольфрама, его монокристаллы и другие вещества).

Ниобий и его сплавы

Nb, или ниобий, – при обычных условиях серебристо-белый блестящий металл. Он также является тугоплавким, поскольку температура перехода в жидкое состояние для него составляет 2477 о С. Именно это качество, а также сочетание низкой химической активности и сверхпроводимости позволяет ниобию становиться все более популярным в практической деятельности человека с каждым годом. Сегодня этот металл используется в таких отраслях, как:

  • ракетостроение;
  • авиационная и космическая промышленность;
  • атомная энергетика;
  • химическое аппаратостроение;
  • радиотехника.

Этот металл сохраняет свои физические свойства даже при очень низких температурах. Изделия на его основе отличаются коррозионной устойчивостью, жаростойкостью, прочностью, отличной проводимостью.

Этот металл добавляют к алюминиевым материалам для повышения химической стойкости. Из него изготовляют катоды и аноды, им легируют цветные сплавы. Даже монеты в некоторых странах делают с содержанием ниобия.

Тантал

Металл, в свободном виде и при обычных условиях покрытый оксидной пленкой. Обладает набором физических свойств, которые позволяют ему быть широко распространенным и очень важным для человека. Его основные характеристики следующие:

  1. При температуре свыше 1000 о С становится сверхпроводником.
  2. Это наиболее тугоплавкий металл после вольфрама и рения. Температура плавления составляет 3017 о С.
  3. Прекрасно поглощает газы.
  4. С ним легко работать, так как он прокатывается в пласты, фольгу и проволоку без особого труда.
  5. Обладает хорошей твердостью и не хрупкий, сохраняет пластичность.
  6. Очень устойчив к воздействию химических агентов (не растворяется даже в царской водке).

Благодаря таким характеристикам сумел завоевать популярность как основа для многих жаропрочных и кислотоустойчивых, антикоррозионных сплавов. Его многочисленные соединения находят применение в ядерной физике, электронике, приборах вычислительного плана. Используются как сверхпроводники. Раньше тантал использовался как элемент в лампах накаливания. Сейчас его место занял вольфрам.

Хром и его сплавы

Один из самых твердых металлов, в естественном виде голубовато-белой окраски. Его температура плавления ниже, чем у рассмотренных до сих пор элементов, и составляет 1907 о С. Однако он все равно используется в технике и промышленности повсеместно, так как хорошо поддается механическим воздействиям, обрабатывается и формуется.

Особенно ценен хром в качестве напылителя. Его наносят на изделия для придания им красивого блеска, защиты от коррозии и повышения износостойкости. Процесс называется хромированием.

Сплавы хрома очень популярны. Ведь даже небольшое количество этого металла в сплаве значительно увеличивает твердость и устойчивость последнего к воздействиям.

Цирконий

Один из самых дорогих металлов, поэтому применение его в технических целях затруднено. Однако физические характеристики делают его просто незаменимым во многих других отраслях.

При обычных условиях это красивый серебристо-белый металл. Обладает достаточно высокой температурой плавления – 1855 о С. Имеет хорошую твердость, устойчивость к коррозии, так как химически не активен. Также отличается великолепной биологической совместимостью с кожей человека и всего организма в целом. Это делает его ценным металлом для использования в медицине (инструменты, протезы и так далее).

Основные области применения циркония и его соединений, в том числе сплавов, следующие:

  • ядерная энергетика;
  • пиротехника;
  • легирование металлов;
  • медицина;
  • изготовление биопосуды;
  • конструкционный материал;
  • как сверхпроводник.

Из циркония и сплавов на его основе изготавливаются даже украшения, способные влиять на улучшение состояния здоровья человека.

Молибден

Если выяснять, какой металл самый тугоплавкий, то, помимо обозначенного вольфрама, можно назвать и молибден. Его температура плавления составляет 2623 о С. При этом он достаточно твердый, пластичный и поддающийся обработке.

Используется он в основном не в чистом виде, а как составной компонент сплавов. Они, благодаря присутствию молибдена, значительно укрепляются в износостойкости, жаропрочности и антикоррозийности.

Некоторые соединения молибдена используют как технические смазки. Также этот металл является легирующим материалом, одновременно влияющим и на прочность, и на антикоррозийность, что встречается очень редко.

Ванадий

Серый металл с серебристым блеском. Обладает достаточно высоким показателем плавкости (1920 о С). Используется в основном как катализатор во многих процессах, благодаря своей инертности. Применяется в энергетике как химический источник тока, в производствах неорганических кислот. Основное значение имеет не чистый металл, а именно некоторые его соединения.

Рений и сплавы на его основе

Какой металл самый тугоплавкий после вольфрама? Это рений. Его показатель плавкости составляет 3186 о С. По прочности превосходит и вольфрам, и молибден. Пластичность его не слишком высока. Спрос на рений очень велик, а вот добыча составляет сложности. Вследствие этого он является самым дорогим металлом из существующих на сегодняшний день.

Применяется для изготовления:

  • реактивных двигателей;
  • термопар;
  • нитей накаливания для спектрометров и прочих устройств;
  • как катализатор при нефтепереработке.

Все области применения дорогостоящие, поэтому он используется только в случае крайней необходимости, когда заменить чем-либо другим возможности нет.

Титановые сплавы

Титан – это очень легкий металл серебристо-белого цвета, который находит широкое применение в металлургической промышленности и металлообработке. Может взорваться при нахождении в мелкодисперсном состоянии, поэтому является пожароопасным.

Применяется в авиа- и ракетостроении, при производстве кораблей. Широко используется в медицине благодаря биологической совместимости с организмом (протезы, пирсинги, имплантаты и прочее).

fb.ru

название и свойства:: SYL.ru

Металлы относятся к самым распространенным материалам наравне со стеклом и пластмассами. Они используются людьми с давних времен. На практике люди познавали свойства металлов и с выгодой использовали их для изготовления посуды, бытовых предметов, различных сооружений и произведений искусства. Основной характеристикой этих материалов является их тугоплавкость и твердость. Собственно, от этих качеств зависит их применение в той или иной области.

Физические свойства металлов

Все металлы обладают следующими общими свойствами:

  1. Цвет – серебристо-серый с характерным блеском. Исключение составляют: медь и золото. Они соответственно выделяются красноватым и желтым оттенком.
  2. Агрегатное состояние – твердое тело, кроме ртути, которая является жидкостью.
  3. Тепло- и электропроводность – для каждого вида металлов выражается по-разному.
  4. Пластичность и ковкость – изменяющийся параметр в зависимости от конкретного металла.
  5. Температура плавления и кипения – устанавливает тугоплавкость и легкоплавкость, обладает разными значениями для всех материалов.

Все физические свойства металлов зависят от строения кристаллической решетки, ее формы, прочности и пространственного расположения.

Тугоплавкость металлов

Этот параметр становится важным, когда возникает вопрос о практическом применении металлов. Для таких важных отраслей народного хозяйства, как авиастроение, кораблестроение, машиностроение, основой являются тугоплавкие металлы и их сплавы. Кроме этого, их используют для изготовления высокопрочного рабочего инструмента. Литьем и выплавкой получают многие важные детали и изделия. По прочности все металлы делятся на хрупкие и твердые, а по тугоплавкости их подразделяют на две группы.

Тугоплавкие и легкоплавкие металлы

  1. Тугоплавкие – их температура плавления превышает точку плавления железа (1539 °C). К ним можно отнести платину, цирконий, вольфрам, тантал. Таких металлов всего несколько видов. На практике их применяется еще меньше. Некоторые не используются, так как они имеют высокую радиоактивность, другие – слишком хрупкие и не обладают нужной мягкостью, третьи – подвержены коррозии, а есть такие, что экономически невыгодные. Какой металл самый тугоплавкий? Как раз об этом пойдет речь в данной статье.
  2. Легкоплавкие – это металлы, которые при температуре меньше или равной температуре плавления олова 231,9 °C могут изменить свое агрегатное состояние. Например, натрий, марганец, олово, свинец. Металлы применяются в радио- и электротехнике. Их часто используют для антикоррозийных покрытий и в качестве проводников.

Вольфрам – самый тугоплавкий металл

Это твердый и тяжелый материал с металлическим блеском, светло-серого цвета, обладающий высокой тугоплавкостью. Механической обработке поддается трудно. При комнатной температуре он является хрупким металлом и легко ломается. Вызвано это загрязнением его примесями кислорода и углерода. Технически чистый вольфрам при температуре более 400 градусов Цельсия становится пластичным. Проявляет химическую инертность, плохо вступает в реакции с другими элементами. В природе вольфрам встречается в виде сложных минералов, таких как:

  • шеелит;
  • вольфрамит;
  • ферберит;
  • гюбнерит.

Вольфрам получают из руды, применяя сложные химические переработки, в виде порошка. Используя методы прессования и спекания, изготовляют детали простой формы и бруски. Вольфрам – очень стойкий элемент к температурным воздействиям. Поэтому размягчить металл не могли в течение ста лет. Не имелось таких печей, которые могли бы разогреваться до нескольких тысяч градусов. Ученые доказали, что самым тугоплавким металлом является вольфрам. Хотя существует мнение, что сиборгий, по теоретическим данным, обладает большей тугоплавкостью, но утверждать твердо этого нельзя, так как он радиоактивный элемент и имеет маленький срок существования.

Исторические сведения

Знаменитый шведский химик Карл Шееле, имеющий профессию аптекаря, в небольшой лаборатории, проводя многочисленные опыты, открыл марганец, барий, хлор и кислород. А незадолго до смерти в 1781 году выявил, что минерал тунгстен является солью неизвестной тогда кислоты. После двух лет работы его ученики, два брата д’Элуяр (испанские химики), выделили из минерала новый химический элемент и назвали его вольфрамом. Только через столетие вольфрам – самый тугоплавкий металл – произвел настоящий переворот в промышленности.

Режущие свойства вольфрама

В 1864 году английский ученый Роберт Мюшет использовал вольфрам как легирующую добавку к стали, которая выдерживала красное каление и еще больше увеличивала твердость. Резцы, которые изготовляли из полученной стали, увеличили скорость резания металла в 1,5 раза, и она стала составлять 7,5 метра в минуту.

Работая в этом направлении, ученые получали все новые технологии, увеличивая скорость обработки металла с использованием вольфрама. В 1907 году появилось новое соединение вольфрама с кобальтом и хромом, которое стало основоположником твердых сплавов, способных увеличивать скорость резания. В настоящее время она возросла до 2000 метров в минуту, и все это благодаря вольфраму – самому тугоплавкому металлу.

Применение вольфрама

Этот металл обладает сравнительно высокой ценой и тяжело обрабатывается механическим способом, поэтому применяют его там, где невозможно заменить другими, сходными по свойствам материалами. Вольфрам прекрасно выдерживает высокие температуры, имеет значительную прочность, наделен твердостью, упругостью и тугоплавкостью, поэтому находит широкое использование во многих областях промышленности:

  • Металлургической. Она является основным потребителем вольфрама, который идет на производство высокого качества легированных сталей.
  • Электротехнической. Температура плавления самого тугоплавкого металла составляет почти 3400 °C. Тугоплавкость металла позволяет применять его для производства нитей накаливания, крючков в осветительных и электронных лампах, электродов, рентгеновских трубок, электрических контактов.

  • Машиностроительной. Благодаря повышенной прочности сталей, содержащих вольфрам, изготавливают цельнокованые роторы, зубчатые колеса, коленчатые валы, шатуны.
  • Авиационной. Какой самый тугоплавкий металл используют для получения твердых и жаропрочных сплавов, из которых делают детали авиационных двигателей, электровакуумных приборов, нити накаливания? Ответ прост – это вольфрам.
  • Космической. Из стали, содержащей вольфрам, производят реактивные сопла, отдельные элементы для реактивных двигателей.
  • Военной. Высокая плотность металла позволяет изготавливать бронебойные снаряды, пули, броневую защиту торпед, снарядов и танков, гранаты.
  • Химической. Стойкая вольфрамовая проволока против кислот и щелочей используется для сеток к фильтрам. С помощью вольфрама меняют скорость химических реакций.
  • Текстильной. Вольфрамовая кислота используется как краситель для тканей, а вольфрамит натрия применяют для производства кожи, шелка, водоустойчивых и огнестойких тканей.

Приведенный перечень использования вольфрама в разных областях индустрии указывает на высокую ценность этого металла.

Получение сплавов с вольфрамом

Вольфрам, самый тугоплавкий металл в мире, часто используют для получения сплавов с другими элементами для улучшения свойств материалов. Сплавы, которые содержат вольфрам, как правило, получают по технологии порошковой металлургии, так как при общепринятом способе все металлы превращаются в летучие жидкости или газы при его температуре плавления. Процесс сплавления проходит в вакууме или в атмосфере аргона, чтобы избежать окисления. Смесь, состоящую из металлических порошков, прессуют, спекают и подвергают плавке. В некоторых случаях только вольфрамовый порошок подвергают прессовке и спеканию, а затем пористую заготовку насыщают расплавом другого металла. Сплавы вольфрама с серебром и медью получают именно таким способом. Даже небольшие добавки самого тугоплавкого металла увеличивают жаростойкость, твердость и стойкость к окислению в сплавах с молибденом, танталом, хромом и ниобием. Пропорции в этом случае могут быть совершенно любыми в зависимости от потребностей промышленности. Более сложные сплавы, зависящие от соотношения компонентов с железом, кобальтом и никелем, имеют следующие свойства:

  • не тускнеют на воздухе;
  • обладают хорошей химической стойкостью;
  • имеют отличные механические свойства: твердость и износоустойчивость.

Довольно сложные соединения образует вольфрам с бериллием, титаном и алюминием. Они выделяются устойчивостью при высокой температуре к окислению, а также жаропрочностью.

Свойства сплавов

В практической деятельности вольфрам часто соединяют с группой иных металлов. Соединения вольфрама с хромом, кобальтом и никелем, обладающие повышенной стойкостью к кислотам, используют для изготовления хирургических инструментов. А особые жаропрочные сплавы, кроме вольфрама – самого тугоплавкого металла, содержат в своем составе хром, никель, алюминий, никель. Вольфрам, кобальт и железо входит в состав лучших марок магнитной стали.

Самые легкоплавкие и тугоплавкие металлы

К легкоплавким относятся все металлы, температура плавления которых меньше, чем у олова (231,9 °C). Элементы этой группы находят применение в качестве антикоррозийных покрытий, в электро- и радиотехнике, входят в состав антифрикционных сплавов. Ртуть, точка плавления которой -38,89 °C, при комнатной температуре является жидкостью и находит широкое применение в научных приборах, ртутных лампах, выпрямителях, переключателях, в хлорном производстве. У ртути самая низкая температура плавления по сравнению с другими металлами, входящими в группу легкоплавких. К тугоплавким металлам принадлежат все, температура плавления которых больше, чем у железа (1539 °C). Чаще всего их используют в качестве добавок при изготовлении легированных сталей, а также они могут служить и основой для некоторых специальных сплавов. Вольфрам, имеющий максимальную температуру плавления 3420 °C, в чистом виде используют в основном для нитей накала в электролампах.

Довольно часто в кроссвордах задают вопросы, какой из металлов самый легкоплавкий или самый тугоплавкий? Теперь, не задумываясь, можно ответить: самый легкоплавкий – ртуть, а самый тугоплавкий – вольфрам.

Коротко о железе

Этот металл называют основным конструкционным материалом. Детали из железа встречаются как на космическом корабле или подводной лодке, так и дома на кухне в виде столовых приборов и различных украшений. Этот металл имеет серебристо-серый цвет, обладает мягкостью, пластичностью и магнитными свойствами. Железо является очень активным элементом, на воздухе образуется оксидная пленка, которая препятствует продолжению реакции. Во влажной среде появляется ржавчина.

Температура плавления железа

Железо обладает пластичностью, хорошо поддается ковке и плохо обрабатывается литьем. Этот прочный металл легко обрабатывается механическим способом, используется для изготовления магнитоприводов. Хорошая ковкость позволяет его применять для декоративных украшений. Является ли железо самым тугоплавким металлом? Следует отметить, что его температура плавления равна 1539 °C. А по определению, к тугоплавким относятся металлы, температура плавления которых больше, чем у железа.

Однозначно можно сказать, что железо – не самый тугоплавкий металл, и даже не принадлежит к этой группе элементов. Он относится к среднеплавким материалам. Назовите самый тугоплавкий металл? Такой вопрос не застанет теперь вас врасплох. Можно смело отвечать – это вольфрам.

Вместо заключения

Примерно тридцать тысяч тонн в год вольфрама производится во всем мире. Этот металл непременно входит в состав наилучших сортов сталей для изготовления инструментов. На нужды металлургии расходуется до 95% всего вырабатываемого вольфрама. Для удешевления процесса в основном используют более дешевый сплав, состоящий из 80% процентов вольфрама и 20% железа. Используя свойства вольфрама, его сплав с медью и никелем применяют для производства контейнеров, используемых под хранение радиоактивных веществ. В радиотерапии этот же сплав служит для изготовления экранов, обеспечивая надежную защиту.

www.syl.ru

Температура плавления разных металлов в таблице

Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму : она составляет 3422С о, самая низкая - у ртути: элемент плавится уже при - 39С о. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Как происходит

Плавление всех металлов происходит примерно одинаково - при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул , возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

Разделение металлов

В зависимости от температуры плавления металлы делятся на:

  1. Легкоплавкие: им необходимо не более 600С о. Это цинк, свинец, виснут, олово.
  2. Среднеплавкие: температура плавления колеблется от 600С о до 1600С о. Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
  3. Тугоплавкие: требуется температура свыше 1600С о, чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.

В зависимости от температуры плавления выбирают и плавильный аппарат . Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны .

  1. Увеличивается давление - увеличится величина плавления.
  2. Уменьшается давление - уменьшается величина плавления.

Таблица легкоплавких металлов и сплавов (до 600С о)

Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о)

Таблица тугоплавких металлов и сплавов (свыше 1600С о)

stanok.guru

Тугоплавкие металлы – список и область применения

Еще с конца 19 века были известны тугоплавкие металлы. Тогда им не нашлось применения. Единственная отрасль, где их использовали, была электротехника и то в очень ограниченных количествах. Но все резко поменялось с развитием сверхзвуковой авиации и ракетной техники в 50-е года прошлого столетия. Производству потребовались новые материалы, способные выдерживать значительные нагрузки в условиях температур свыше 1000 ºC.

Список и характеристики тугоплавких металлов

Тугоплавкость характеризуется повышенным значением температуры перехода из твердого состояния в жидкую фазу. Металлы, плавление которых осуществляется при 1875 ºC и выше, относят к группе тугоплавких металлов. По порядку возрастания температуры плавки сюда входят следующие их виды:

  • Ванадий
  • Родий
  • Гафний
  • Рутений
  • Вольфрам
  • Иридий
  • Тантал
  • Молибден
  • Осмий
  • Рений
  • Ниобий.

Современное производство по количеству месторождений и уровню добычи удовлетворяют только вольфрам, молибден, ванадий и хром. Рутений, иридий, родий и осмий встречаются в естественных условиях довольно редко. Их годовое производство не превышает 1,6 тонны.

Жаропрочные металлы обладают следующими основными недостатками:

  • Повышенная хладноломкость. Особенно она выражена у вольфрама, молибдена и хрома. Температура перехода у металла от вязкого состояния к хрупкому чуть выше 100 ºC, что создает неудобства при их обработке давлением.
  • Неустойчивость к окислению. Из-за этого при температуре свыше 1000 ºC тугоплавкие металлы применяются только с предварительным нанесением на их поверхность гальванических покрытий. Хром наиболее устойчив к процессам окисления, но как тугоплавкий металл он имеет самую низкую температуру плавления.

К наиболее перспективным тугоплавким металлам относят ниобий и молибден. Это связано с их распространённостью в природе, а, следовательно, и низкой стоимостью в сравнении с другими элементами данной группы.

Самый тугоплавкий металл встречаемый в природе – вольфрам. Его механические характеристики не падают при температуре окружающей среды свыше 1800 ºC. Но перечисленные выше недостатки плюс повышенная плотность ограничивают его область использования в производстве. Как чистый металл он применяется все реже и реже. Зато увеличивается ценность вольфрама как легирующего компонента.

Физико-механические свойства

Металлы с высокой температурой плавления (тугоплавкие) являются переходными элементами. Согласно таблице Менделеева выделяют 2 их разновидности:

  • Подгруппа 5A – тантал, ванадий и ниобий.
  • Подгруппа 6A – вольфрам, хром и молибден.

Наименьшей плотностью обладает ванадий – 6100 кг\м3, наибольшей вольфрам – 19300 кг\м3. Удельный вес остальных металлов находится в рамках этих значений. Эти металлы отличаются малым коэффициентом линейного расширения, пониженной упругостью и теплопроводностью.

Данные металлы плохо проводят электрический ток, но обладает таким качеством как сверхпроводимость. Температура сверхпроводящего режима составляет 0,05-9 К исходя из вида металла.

Абсолютно все тугоплавкие металлы отличаются повышенной пластичностью в комнатных условиях. Вольфрам и молибден помимо этого выделяются на фоне остальных металлов более высокой жаропрочностью.

Коррозионная стойкость

Жаропрочным металлам свойственна высокая стойкость к большинству видов агрессивных сред. Сопротивление коррозии элементов 5A подгрупп увеличивается от ванадия к танталу. Как пример, при 25 ºC ванадий растворяется в царской водке, между тем как ниобий полностью инертен по отношению к данной кислоте.

Тантал, ванадий и ниобий отличаются устойчивостью к воздействию расплавленных щелочных металлов. При условии отсутствия в их составе кислорода, которые значительно усиливает интенсивность протекания химической реакции.

Молибден, хром и вольфрам имеют большую сопротивляемость к коррозии. Так азотная кислота, которая активно растворяет ванадий, значительно менее воздействует на молибден. При температуре 20 ºC данная реакция вообще полностью останавливается.

Все тугоплавкие металлы охотно вступают в химическую связь с газами. Поглощение водорода из окружающей среды ниобием осуществляется при 250 ºC. Тантал при 500 ºC. Единственный способ остановить эти процессы – проведение вакуумного отжига при 1000 ºC. Стоит заметить, что вольфрам, хром и молибден куда менее склонны к взаимодействию с газами.

Как уже было сказано ранее, лишь хром отличается сопротивляемостью к окислению. Данное свойство обусловлено его способностью образовывать твердую пленку оксида хрома на своей поверхности. Растворение кислорода хромом происходит только при 700 С. У остальных тугоплавких металлов процессы окисления начинаются ориентировочно при 550 ºC.

Хладноломкость

Распространению использования жаропрочных металлов в производстве мешает обладание ими повышенной склонности к хладноломкости. Это означает, что при падении температуры ниже определенного уровня происходит резкое возрастание хрупкости металла. Для ванадия такой температурой служит отметка в -195 ºC, для ниобия -120 ºC, а вольфрама +330 ºC.

Наличие хладноломкости жаропрочными металлами обусловлено содержанием примесями в их составе. Молибден особой чистоты (99,995%) сохраняет повышенные пластические свойства вплоть до температуры жидкого азота. Но внедрение всего 0,1% кислорода сдвигает точку хладноломкости к -20 С.

Области применения

До середины 40-х годов тугоплавкие металлы использовались только как легирующие элементы для улучшения механических характеристик стальных цветных сплавов на основе меди и никеля в электропромышленности. Соединения молибдена и вольфрама применялись также в производстве твердых сплавов.

Техническая революция, связанная с активным развитием авиации, ядерной промышленности и ракетостроения, нашла новые способы использования тугоплавких металлов. Вот неполный перечень новых сфер применения:

  • Производство тепловых экранов головного узла и каркасов ракет.
  • Конструкционный материал для сверхзвуковых самолётов.
  • Ниобий служит материалом сотовой панели космических кораблей. А в ракетостроении его используют в качестве теплообменников.
  • Узлы термореактивного и ракетного двигателя: сопла, хвостовые юбки, лопатки турбин, заслонки форсунок.
  • Ванадий является основой для изготовления тонкостенных трубок тепловыделяющих элементов термоядерного реактора в ядерной промышленности.
  • Вольфрам применяется как нить накаливания электроламп.
  • Молибден все шире и шире используется в производстве электродов, применяемых для плавки стекла. Помимо этого, молибден – металл, используемый для производства форм литья под давлением.
  • Производство инструмента для горячей обработки деталей.

prompriem.ru

Самый тугоплавкий металл на земле

Любознательных людей наверняка интересует вопрос, какой металл самый тугоплавкий? Прежде чем дать на него ответ, стоит разобраться с сами понятием тугоплавкости. Все известные науки металлы имеют разную температуру плавления в связи с различной степенью устойчивости связей между атомами в кристаллической решетке. Чем слабее эта связь, тем меньшая температура требуется, чтобы ее разорвать.

Самые тугоплавкие металлы в мире используются в чистом виде или в составе сплавов для производства деталей, которые работают в экстремальных термических условиях. Они позволяют эффективно противостоять высоким температурам и значительно продляют эксплуатационный период агрегатов. Но стойкость металлов данной группы к термическому воздействию заставляет металлургов прибегать к нестандартным методам их производства.

Какой металл самый тугоплавкий?

Самый тугоплавкий металл на Земле был открыт в 1781 году шведским ученым Карлом Вильгельмом Шееле. Новый материал получил название вольфрам. Шееле удалось синтезировать триокись вольфрама путем растворения руды в азотной кислоте. Чистый металл был выделен двумя годами позже испанскими химиками Фаусто Фермином и Хуаном Хосе де Элюар. Новый элемент не сразу получил признание и был взят на вооружение промышленниками. Дело в том, что технологии того времени не позволяли обрабатывать столь тугоплавкое вещество, поэтому большинство современников не придали особого значения научному открытию.

Вольфрам был оценен гораздо позже. На сегодняшний день его сплавы используются при производстве термостойких деталей для различных отраслей промышленности. Нить накаливания в газоразрядных бытовых лампах также изготавливается из вольфрама. Также он применяется в аэрокосмической промышленности для производства ракетных сопел, используется в качестве многоразовых электродов в газодуговой сварке. Кроме тугоплавкости вольфрам также обладает высокой плотностью, что позволяет использовать его для изготовления высококачественных клюшек для гольфа.

Соединения вольфрама с неметаллами также широко применяется в промышленности. Так сульфид используется в качестве термостойкой смазки, способной переносить температуры до 500 градусов по Цельсию, карбид служит для изготовления резцов, абразивных дисков и сверл, способных обрабатывать самые твердые вещества и переносить высокие температуры нагрева. Рассмотрим, наконец, промышленное получение вольфрама. Самый тугоплавкий металл имеет температуру плавления 3422 градуса по Цельсию.

Как получают вольфрам?

В природе чистый вольфрам не встречается. Он входит в состав горных пород в виде триоксида, а также вольфрамитов железа, марганца и кальция, реже меди или свинца. По оценкам ученых содержание вольфрама в земной коре в среднем составляет 1,3 грамма на одну тонну. Это достаточно редкий элемент по сравнению с другими видами металлов. Содержание вольфрама в руде после добычи обычно не превышает 2%. Поэтому добытое сырье отправляется на обогатительные фабрики, где методом магнитной или электростатической сепарации массовая доля металла доводится до отметки 55-60%.

Процесс его получения разделяется на технологические этапы. На первом этапе выделяют чистый триоксид из добытой руды. Для этого используют метод термического разложения. При температурах от 500 до 800 градусов по Цельсию все лишние элементы расплавляются, а тугоплавкий вольфрам в виде оксида легко можно собрать из расплава. На выходе получается сырье с содержанием оксида шестивалентного вольфрама на уровне 99%.

Полученное соединение тщательно измельчают и проводят восстановительную реакцию в присутствии водорода при температуре 700 градусов по Цельсию. Это позволяет выделить чистый металл в виде порошка. Далее его спрессовывают под высоким давлением и спекают в водородной среде при температурах 1200-1300 градусов по Цельсию. После этого полученная масса отправляется в электрическую плавильную печь, где под воздействием тока нагревается до температуры свыше 3000 градусов. Так вольфрам переходит в расплавленное состояние.

Для окончательной очистки от примесей и получения монокристаллической структурной решетки используется метод зонной плавки. Он подразумевает, что в определенный момент времени расплавленной находится только некоторая зона из общей площади металла. Постепенно двигаясь, эта зона перераспределяет примеси, в результате чего в конечном итоге они скапливаются в одном месте и их легко можно удалить из структуры сплава.

Готовый вольфрам поступает на склад в виде штабиков или слитков, предназначенных для последующего производства нужной продукции. Для получения сплавов вольфрама все составные элементы измельчают и смешивают в виде порошка в необходимых пропорциях. Далее производится спекание и плавка в электрической печи.

promplace.ru

Тугоплавкие металлы – это… Что такое Тугоплавкие металлы?

H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac ** Rf Db Sg Bh Hs Mt Ds Rg
* Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Тугоплавкие металлы - класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными представителями данного класса элементов являются элементы пятого периода - ниобий и молибден; шестого периода - тантал, вольфрам и рений. Все они имеют температуру плавления выше 2000 °C, химически относительно инертны и обладают повышенным показателем плотности. Благодаря порошковой металлургии из них можно получать детали для разных областей промышленности.

Определение

Большинство определений термина тугоплавкие металлы определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, что бы металлы имели температуру плавления выше 2 200 °C. Это необходимо для их определения как тугоплавких металлов . Пять элементов - ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные , в то время как более широкое определение этих металлов позволяет включить в этот список еще и элементы имеющие температуру плавления 2123K (1850 °C) - титан, ванадий, хром, цирконий, гафний, рутений и осмий. Трансурановые элементы (все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам .

Свойства

Физические свойства

Температура плавления этих элементов самая высокая, исключая углерод и осмий. Данное свойство зависит не только от их свойств, но и от свойств их сплавов. Металлы имеют кубическую сингонию, исключая рений, у которого она принимает вид гексагональной плотнейшей упаковки. Большинство физических свойств элементов в этой группе существенно различается, потому что они являются членами различных групп .

Сопротивление к деформации ползучести (англ. ) является определяющим свойством тугоплавких металлов. У обычных металлов деформация начинается с температуры плавления металла, а отсюда деформация ползучести в алюминиевых сплавах начинается от 200 °C, в то время как у тугоплавких металлов она начинается от 1500 °C. Это сопротивление к деформации и высокая температура плавления позволяет тугоплавким металлам быть использованными, например, в качестве деталей реактивных двигателей или при ковке различных материалов .

Химические свойства

На открытом воздухе подвергаются окислению. Эта реакция замедляется в связи с формированием пассивированного слоя. Оксид рения является очень неустойчивым, потому что при пропускании плотного потока кислорода его оксидная плёнка испаряется. Все они относительно устойчивы к воздействию кислот.

Применение

Тугоплавкие металлы используются в качестве источников света, деталей, смазочных материалов, в ядерной промышленности в качестве АРК, в качестве катализатора. Из-за того, что они имеют высокие температуры плавления, они никогда не используются в качестве материала для выплавки на открытом месте. В порошкообразном виде материал уплотняют с помощью плавильных печей. Тугоплавкие металлы можно переработать в проволоку, слиток, арматуру, жесть или фольгу.

Вольфрам и его сплавы

Вольфрам был найден в 1781 году шведским химиком Карлом Вильгельмом Шееле. Вольфрам имеет самую высокую температуру плавления среди всех металлов - 3422 °C.

Вольфрам.

Рений используется в сплавах с вольфрамом в концентрации до 22 %, что позволяет повысить тугоплавкость и устойчивость к коррозии. Торий применяется в качестве легирующего компонента вольфрама. Благодаря этому повышается износостойкость материалов. В порошковой металлургии компоненты могут быть использованы для спекания и последующего применения. Для получения тяжёлых сплавов вольфрама применяются никель и железо или никель и медь. Содержание вольфрама в данных сплавах как правило выше 90 %. Смешивание легирующего материала с ним низкое даже при спекании .

Вольфрам и его сплавы по-прежнему используются там, где присутствуют высокие температуры, но нужна однако высокая твёрдость и где высокой плотностью можно пренебречь . Нити накаливания, состоящие из вольфрама, находят свое применение в быту и в приборостроении. Лампы более эффективно преобразовывают электроэнергию в свет с повышением температуры . В вольфрамовой газодуговой сварке (англ. ) оборудование используется постоянно, без плавления электрода. Высокая температура плавления вольфрама позволяет ему быть использованным при сварке без затрат . Высокая плотность и твёрдость позволяют вольфраму быть использованным в артиллерийских снарядах . Его высокая температура плавления применяется при строении ракетных сопел, примером может служить ракета «Поларис» . Иногда он находит свое применение благодаря своей плотности. Например, он находит свое применение в производстве клюшек для гольфа . В таких деталях применение не ограничивается вольфрамом, так как более дорогой осмий тоже может быть использован.

Сплавы молибдена

Молибден.

Широкое применение находят сплавы молибдена. Наиболее часто используемый сплав - титан-цирконий-молибден - содержит в себе 0,5 % титана, 0,08 % циркония и остальное молибден. Сплав обладает повышенной прочностью при высоких температурах. Рабочая температура для сплава - 1060 °C. Высокое сопротивление сплава вольфрам-молибден (Mo 70 %, W 30 %) делает его идеальным материалом для отливки деталей из цинка, например, клапанов .

Молибден используется в ртутных герконовых реле, так как ртуть не формирует амальгамы с молибденом .

Молибден является самым часто используемым тугоплавким металлом. Наиболее важным является его использование в качестве усилителя сплавов стали. Применяется при изготовлении трубопроводов вместе с нержавеющей сталью. Высокая температура плавления молибдена, его сопротивляемость к износу и низкий коэффициент трения делают его очень полезным материалом для легирования. Его прекрасные показатели трения приводят его к использованию в качестве смазки где требуется надежность и производительность. Применяется при производстве ШРУСов в автомобилестроении. Большие месторождения молибдена находятся в Китае, США, Чили и Канаде .

Сплавы ниобия

Тёмная часть сопла Apollo CSM сделана из сплава титан-ниобий.

Ниобий почти всегда находится вместе с танталом; ниобий был назван в честь Ниобы, дочери Тантала в греческой мифологии. Ниобий находит множество путей для применения, некоторые он разделяет с тугоплавкими металлами. Его уникальность заключается в том, что он может быть разработан путем отжига для того, чтобы достичь широкого спектра показателей твёрдости и упругости; его показатель плотности самый малый по сравнению с остальными металлами данной группы. Он может применяться в электролитических конденсаторах и является самым частым металлом в суперпроводниковых сплавах. Ниобий может применяться в газовых турбинах воздушного судна, в электронных лампах и ядерных реакторах.

Сплав ниобия C103, который состоит из 89 % ниобия, 10 % гафния и 1 % титана, находит свое применение при создании сопел в жидкостных ракетных двигателях, например таких как Apollo CSM (англ. ) . Применявшийся сплав не позволяет ниобию окисляться, так как реакция происходит при температуре от 400 °C .

Тантал

Тантал является самым стойким к коррозии металлом из всех тугоплавких металлов.

Важное свойство тантала было выявлено благодаря его применению в медицине - он способен выдерживать кислую среду (организма). Иногда он используется в электролитических конденсаторах. Применяется в конденсаторах сотовых телефонов и компьютера.

Сплавы рения

Рений является самым последним открытым тугоплавким элементом из всей группы. Он находится в низких концентрациях в рудах других металлов данной группы - платины или меди. Может применяться в качестве легирующего компонента с другими металлами и придает сплавам хорошие характеристики - ковкость и увеличивает предел прочности. Сплавы с рением могут применяться в компонентах электронных приборов, гироскопах и ядерных реакторах. Самое главное применение находит в качестве катализатора. Может применяться при алкилировании, деалкилировании, гидрогенизации и окислении. Его столь редкое присутствие в природе делает его самым дорогим из всех тугоплавких металлов .

Общие свойства тугоплавких металлов

Тугоплавкие металлы и их сплавы привлекают внимание исследователей из-за их необычных свойств и будущих перспектив в применении.

Физические свойства тугоплавких металлов, таких как молибден, тантал и вольфрам, их показатели твёрдости и стабильность при высоких температурах делает их используемым материалом для горячей металлообработки материалов как в вакууме, так и без него. Многие детали основаны на их уникальных свойствах: например, вольфрамовые нити накаливания способны выдерживать температуры вплоть до 3073K.

Однако, их сопротивляемость к окислению вплоть до 500 °C делает это одним из главных недостатков этой группы. Контакт с воздухом может существенно повлиять на их высокотемпературные характеристики. Именно поэтому их используют в материалах, в которых они изолированы от кислорода (например лампочка).

Сплавы тугоплавких металлов - молибдена, тантала и вольфрама - применяются в деталях космических ядерных технологий. Эти компоненты были специально созданы в качестве материала способного выдержать высокие температуры (от 1350K до 1900K). Как было указано выше, они не должны контактировать с кислородом.

См. также

Примечания

  1. H. Ortner International Journal of Refractory Metals and Hard Materials (англ.). Elsevier. Архивировано из первоисточника 20 июня 2012. Проверено 26 сентября 2010.
  2. Michael Bauccio Refractory metals // ASM metals reference book / American Society for Metals. - ASM International, 1993. - С. 120-122. - ISBN 19939780871704788
  3. Wilson, J. W General Behaviour of Refractory Metals // Behavior and Properties of Refractory Metals. - Stanford University Press, 1965. - С. 1-28. - 419 с. - ISBN 9780804701624
  4. Joseph R. Davis Alloying: understanding the basics. - ASM International, 2001. - С. 308-333. - 647 с. - ISBN 9780871707444
  5. 1 2 Borisenko, V. A. Investigation of the temperature dependence of the hardness of molybdenum in the range of 20-2500 °C // Журнал Soviet Powder Metallurgy and Metal Ceramics . - 1963. - С. 182. - DOI:10.1007/BF00775076
  6. Fathi, Habashi Historical Introduction to Refractory Metals // Журнал Mineral Processing and Extractive Metallurgy Review . - 2001. - С. 25-53. - DOI:10.1080/08827509808962488
  7. Schmid, Kalpakjian Creep // Manufacturing engineering and technology. - Pearson Prentice Hall, 2006. - С. 86-93. - 1326 с. - ISBN 9787302125358
  8. Weroński, Andrzej; Hejwowski, Tadeusz Creep-Resisting Materials // Thermal fatigue of metals. - CRC Press, 1991. - С. 81-93. - 366 с. - ISBN 9780824777265
  9. 1 2 Erik Lassner, Wolf-Dieter Schubert Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. - Springer, 1999. - С. 255-282. - 422 с. - ISBN 9780306450532
  10. National Research Council (U.S.), Panel on Tungsten, Committee on Technical Aspects of Critical and Strategic Material Trends in Usage of Tungsten: Report. - National Research Council, National Academy of Sciences-National Academy of Engineering, 1973. - С. 1-3. - 90 с.
  11. Michael K. Harris Welding Health and Safety // Welding health and safety: a field guide for OEHS professionals. - AIHA, 2002. - С. 28. - 222 с. - ISBN 9781931504287
  12. William L. Galvery, Frank M. Marlow Welding essentials: questions & answers. - Industrial Press Inc., 2001. - С. 185. - 469 с. - ISBN 9780831131517
  13. W. Lanz, W. Odermatt, G. Weihrauch (7-11 мая 2001). “KINETIC ENERGY PROJECTILES: DEVELOPMENT HISTORY, STATE OF THE ART, TRENDS” in 19th International Symposium of Ballistics ..
  14. P. Ramakrishnan Powder metallurgyfor Aerospace Applications // Powder metallurgy: processing for automotive, electrical/electronic and engineering industry. - New Age International, 2007. - С. 38. - 381 с. - ISBN 8122420303
  15. Arora, Arran Tungsten Heavy Alloy For Defence Applications // Журнал Materials Technology . - 2004. - В. 19. - № 4. - С. 210-216.
  16. V. S. Moxson, F. H. Froes Fabricating sports equipment components via powder metallurgy // Журнал JOM . - 2001. - В. 53. - С. 39. - DOI:10.1007/s11837-001-0147-z
  17. Robert E. Smallwood TZM Moly Alloy // ASTM special technical publication 849: Refractory metals and their industrial applications: a symposium. - ASTM International, 1984. - С. 9. - 120 с. - ISBN 19849780803102033
  18. Kozbagarova, G. A.; Musina, A. S.; Mikhaleva, V. A. Corrosion Resistance of Molybdenum in Mercury // Журнал Protection of Metals . - 2003. - В. 39. - С. 374-376. - DOI:10.1023/A:1024903616630
  19. Gupta, C. K. Electric and Electronic Industry // Extractive Metallurgy of Molybdenum. - CRC Press, 1992. - С. 48-49. - 404 с. - ISBN 9780849347580
  20. Michael J. Magyar Commodity Summary 2009:Molybdenum. United States Geological Survey. Архивировано из первоисточника 20 июня 2012. Проверено 26 сентября 2010.
  21. D.R. Ervin, D.L. Bourell, C. Persad, L. Rabenberg Structure and properties of high energy, high rate consolidated molybdenum alloy TZM // Журнал Materials Science and Engineering: A . - 1988. - В. 102. - С. 25.
  22. Neikov Oleg D. Properties of Molybdenum and Molybdenum Alloys powder // Handbook of Non-Ferrous Metal Powders: Technologies and Applications. - Elsevier, 2009. - С. 464-466. - 621 с. - ISBN 9781856174220
  23. Joseph R. Davis Refractory Metalls and Alloys // ASM specialty handbook: Heat-resistant materials. - ASM International, 1997. - С. 361-382. - 591 с. - ISBN 9780871705969
  24. 1 2 John Hebda Niobium alloys and high Temperature Applications // Журнал Niobium Science & Technology: Proceedings of the International Symposium Niobium 2001 (Orlando, Florida, USA) . - Companhia Brasileira de Metalurgia e Mineração, 2001.
  25. J. W. Wilson Rhenium // Behavior and Properties of Refractory Metals. - Stanford University Press, 1965. - ISBN 9780804701624

Литература

  • Levitin, Valim High Temperature Strain of Metals and Alloys: Physical Fundamentals. - WILEY-VCH, 2006. - ISBN 978-3-527-31338-9
  • Brunner, T . Chemical and structural analyses of aerosol and fly-ash particles from fixed-bed biomass combustion plants by electron microscopy, 1st World Conference on Biomass for Energy and Industry: proceedings of the conference held in Sevilla, Spain, 5-9 June 2000 , London: James & James Ltd (2000). Проверено 26 сентября 2010.
  • Donald Spink Reactive Metals. Zirconium, Hafnium, and Titanium // . - 1961. - В. 53. - № 2. - С. 97-104. - DOI:10.1021/ie50614a019
  • Earl Hayes Chromium and Vanadium // Журнал Industrial & Engineering Chemistry . - 1961. - В. 53. - № 2. - С. 105-107. - DOI:10.1021/ie50614a020

Металлы относятся к самым распространенным материалам наравне со стеклом и пластмассами. Они используются людьми с давних времен. На практике люди познавали свойства металлов и с выгодой использовали их для изготовления посуды, бытовых предметов, различных сооружений и произведений искусства. Основной характеристикой этих материалов является их тугоплавкость и твердость. Собственно, от этих качеств зависит их применение в той или иной области.

Физические свойства металлов

Все металлы обладают следующими общими свойствами:

  1. Цвет - серебристо-серый с характерным блеском. Исключение составляют: медь и золото. Они соответственно выделяются красноватым и желтым оттенком.
  2. Агрегатное состояние - твердое тело, кроме ртути, которая является жидкостью.
  3. Тепло- и электропроводность - для каждого вида металлов выражается по-разному.
  4. Пластичность и ковкость - изменяющийся параметр в зависимости от конкретного металла.
  5. Температура плавления и кипения - устанавливает тугоплавкость и легкоплавкость, обладает разными значениями для всех материалов.

Все физические свойства металлов зависят от строения кристаллической решетки, ее формы, прочности и пространственного расположения.

Тугоплавкость металлов

Этот параметр становится важным, когда возникает вопрос о практическом применении металлов. Для таких важных отраслей народного хозяйства, как авиастроение, кораблестроение, машиностроение, основой являются тугоплавкие металлы и их сплавы. Кроме этого, их используют для изготовления высокопрочного рабочего инструмента. Литьем и выплавкой получают многие важные детали и изделия. По прочности все металлы делятся на хрупкие и твердые, а по тугоплавкости их подразделяют на две группы.

Тугоплавкие и легкоплавкие металлы

  1. Тугоплавкие - их температура плавления превышает точку плавления железа (1539 °C). К ним можно отнести платину, цирконий, вольфрам, тантал. Таких металлов всего несколько видов. На практике их применяется еще меньше. Некоторые не используются, так как они имеют высокую радиоактивность, другие - слишком хрупкие и не обладают нужной мягкостью, третьи - подвержены коррозии, а есть такие, что экономически невыгодные. Какой металл самый тугоплавкий? Как раз об этом пойдет речь в данной статье.
  2. Легкоплавкие - это металлы, которые при температуре меньше или равной температуре плавления олова 231,9 °C могут изменить свое агрегатное состояние. Например, натрий, марганец, олово, свинец. Металлы применяются в радио- и электротехнике. Их часто используют для антикоррозийных покрытий и в качестве проводников.

Вольфрам - самый тугоплавкий металл

Это твердый и тяжелый материал с металлическим блеском, светло-серого цвета, обладающий высокой тугоплавкостью. Механической обработке поддается трудно. При комнатной температуре он является хрупким металлом и легко ломается. Вызвано это загрязнением его примесями кислорода и углерода. Технически чистый вольфрам при температуре более 400 градусов Цельсия становится пластичным. Проявляет химическую инертность, плохо вступает в реакции с другими элементами. В природе вольфрам встречается в виде сложных минералов, таких как:

  • шеелит;
  • вольфрамит;
  • ферберит;
  • гюбнерит.

Вольфрам получают из руды, применяя сложные химические переработки, в виде порошка. Используя методы прессования и спекания, изготовляют детали простой формы и бруски. Вольфрам - очень стойкий элемент к температурным воздействиям. Поэтому размягчить металл не могли в течение ста лет. Не имелось таких печей, которые могли бы разогреваться до нескольких тысяч градусов. Ученые доказали, что самым тугоплавким металлом является вольфрам. Хотя существует мнение, что сиборгий, по теоретическим данным, обладает большей тугоплавкостью, но утверждать твердо этого нельзя, так как он радиоактивный элемент и имеет маленький срок существования.

Исторические сведения

Знаменитый шведский химик Карл Шееле, имеющий профессию аптекаря, в небольшой лаборатории, проводя многочисленные опыты, открыл марганец, барий, хлор и кислород. А незадолго до смерти в 1781 году выявил, что минерал тунгстен является солью неизвестной тогда кислоты. После двух лет работы его ученики, два брата д’Элуяр (испанские химики), выделили из минерала новый химический элемент и назвали его вольфрамом. Только через столетие вольфрам - самый тугоплавкий металл - произвел настоящий переворот в промышленности.

Режущие свойства вольфрама

В 1864 году английский ученый Роберт Мюшет использовал вольфрам как легирующую добавку к стали, которая выдерживала красное каление и еще больше увеличивала твердость. Резцы, которые изготовляли из полученной стали, увеличили скорость резания металла в 1,5 раза, и она стала составлять 7,5 метра в минуту.

Работая в этом направлении, ученые получали все новые технологии, увеличивая скорость обработки металла с использованием вольфрама. В 1907 году появилось новое соединение вольфрама с кобальтом и хромом, которое стало основоположником твердых сплавов, способных увеличивать скорость резания. В настоящее время она возросла до 2000 метров в минуту, и все это благодаря вольфраму - самому тугоплавкому металлу.

Применение вольфрама

Этот металл обладает сравнительно высокой ценой и тяжело обрабатывается механическим способом, поэтому применяют его там, где невозможно заменить другими, сходными по свойствам материалами. Вольфрам прекрасно выдерживает высокие температуры, имеет значительную прочность, наделен твердостью, упругостью и тугоплавкостью, поэтому находит широкое использование во многих областях промышленности:

  • Металлургической. Она является основным потребителем вольфрама, который идет на производство высокого качества легированных сталей.
  • Электротехнической. Температура плавления самого тугоплавкого металла составляет почти 3400 °C. Тугоплавкость металла позволяет применять его для производства нитей накаливания, крючков в осветительных и электронных лампах, электродов, рентгеновских трубок, электрических контактов.

  • Машиностроительной. Благодаря повышенной прочности сталей, содержащих вольфрам, изготавливают цельнокованые роторы, зубчатые колеса, коленчатые валы, шатуны.
  • Авиационной. Какой самый тугоплавкий металл используют для получения твердых и жаропрочных сплавов, из которых делают детали авиационных двигателей, электровакуумных приборов, нити накаливания? Ответ прост - это вольфрам.
  • Космической. Из стали, содержащей вольфрам, производят реактивные сопла, отдельные элементы для реактивных двигателей.
  • Военной. Высокая плотность металла позволяет изготавливать бронебойные снаряды, пули, броневую защиту торпед, снарядов и танков, гранаты.
  • Химической. Стойкая вольфрамовая проволока против кислот и щелочей используется для сеток к фильтрам. С помощью вольфрама меняют скорость химических реакций.
  • Текстильной. Вольфрамовая кислота используется как краситель для тканей, а вольфрамит натрия применяют для производства кожи, шелка, водоустойчивых и огнестойких тканей.

Приведенный перечень использования вольфрама в разных областях индустрии указывает на высокую ценность этого металла.

Получение сплавов с вольфрамом

Вольфрам, самый тугоплавкий металл в мире, часто используют для получения сплавов с другими элементами для улучшения свойств материалов. Сплавы, которые содержат вольфрам, как правило, получают по технологии порошковой металлургии, так как при общепринятом способе все металлы превращаются в летучие жидкости или газы при его температуре плавления. Процесс сплавления проходит в вакууме или в атмосфере аргона, чтобы избежать окисления. Смесь, состоящую из металлических порошков, прессуют, спекают и подвергают плавке. В некоторых случаях только вольфрамовый порошок подвергают прессовке и спеканию, а затем пористую заготовку насыщают расплавом другого металла. Сплавы вольфрама с серебром и медью получают именно таким способом. Даже небольшие добавки самого тугоплавкого металла увеличивают жаростойкость, твердость и стойкость к окислению в сплавах с молибденом, танталом, хромом и ниобием. Пропорции в этом случае могут быть совершенно любыми в зависимости от потребностей промышленности. Более сложные сплавы, зависящие от соотношения компонентов с железом, кобальтом и никелем, имеют следующие свойства:

  • не тускнеют на воздухе;
  • обладают хорошей химической стойкостью;
  • имеют отличные механические свойства: твердость и износоустойчивость.

Довольно сложные соединения образует вольфрам с бериллием, титаном и алюминием. Они выделяются устойчивостью при высокой температуре к окислению, а также жаропрочностью.

Свойства сплавов

В практической деятельности вольфрам часто соединяют с группой иных металлов. Соединения вольфрама с хромом, кобальтом и никелем, обладающие повышенной стойкостью к кислотам, используют для изготовления хирургических инструментов. А особые жаропрочные сплавы, кроме вольфрама - самого тугоплавкого металла, содержат в своем составе хром, никель, алюминий, никель. Вольфрам, кобальт и железо входит в состав лучших марок магнитной стали.

Самые легкоплавкие и тугоплавкие металлы

К легкоплавким относятся все металлы, температура плавления которых меньше, чем у олова (231,9 °C). Элементы этой группы находят применение в качестве антикоррозийных покрытий, в электро- и радиотехнике, входят в состав антифрикционных сплавов. Ртуть, точка плавления которой -38,89 °C, при комнатной температуре является жидкостью и находит широкое применение в научных приборах, ртутных лампах, выпрямителях, переключателях, в хлорном производстве. У ртути самая низкая температура плавления по сравнению с другими металлами, входящими в группу легкоплавких. К тугоплавким металлам принадлежат все, температура плавления которых больше, чем у железа (1539 °C). Чаще всего их используют в качестве добавок при изготовлении легированных сталей, а также они могут служить и основой для некоторых специальных сплавов. Вольфрам, имеющий максимальную температуру плавления 3420 °C, в чистом виде используют в основном для нитей накала в электролампах.

Довольно часто в кроссвордах задают вопросы, какой из металлов самый легкоплавкий или самый тугоплавкий? Теперь, не задумываясь, можно ответить: самый легкоплавкий - ртуть, а самый тугоплавкий - вольфрам.

Коротко о железе

Этот металл называют основным конструкционным материалом. Детали из железа встречаются как на космическом корабле или подводной лодке, так и дома на кухне в виде столовых приборов и различных украшений. Этот металл имеет серебристо-серый цвет, обладает мягкостью, пластичностью и магнитными свойствами. Железо является очень активным элементом, на воздухе образуется оксидная пленка, которая препятствует продолжению реакции. Во влажной среде появляется ржавчина.

Температура плавления железа

Железо обладает пластичностью, хорошо поддается ковке и плохо обрабатывается литьем. Этот прочный металл легко обрабатывается механическим способом, используется для изготовления магнитоприводов. Хорошая ковкость позволяет его применять для декоративных украшений. Является ли железо самым тугоплавким металлом? Следует отметить, что его температура плавления равна 1539 °C. А по определению, к тугоплавким относятся металлы, температура плавления которых больше, чем у железа.

Однозначно можно сказать, что железо - не самый тугоплавкий металл, и даже не принадлежит к этой группе элементов. Он относится к среднеплавким материалам. Назовите самый тугоплавкий металл? Такой вопрос не застанет теперь вас врасплох. Можно смело отвечать - это вольфрам.

Вместо заключения

Примерно тридцать тысяч тонн в год вольфрама производится во всем мире. Этот металл непременно входит в состав наилучших сортов сталей для изготовления инструментов. На нужды металлургии расходуется до 95% всего вырабатываемого вольфрама. Для удешевления процесса в основном используют более дешевый сплав, состоящий из 80% процентов вольфрама и 20% железа. Используя свойства вольфрама, его сплав с медью и никелем применяют для производства контейнеров, используемых под хранение радиоактивных веществ. В радиотерапии этот же сплав служит для изготовления экранов, обеспечивая надежную защиту.

Используя мощные компьютерные модели, исследователи из Университета Брауна определили материал с температурой плавления выше, чем у любого из известных веществ. Расчеты показывают, что материал, изготовленный из гафния, азота и углерода будет иметь температуру плавления более чем 4400 К. Это примерно две трети от температуры на поверхности Солнца и на 200 К выше, чем самая высокая точка плавления из когда-либо зарегистрированных в ходе эксперимента.

Раньше было экспериментально подтверждено, что рекордной температурой плавления обладает вещество из элементов гафния, тантала, и углерода (HF-Та-C).Расчеты, представленные в журнале Physical Review B, показали, что материал, изготовленный с определенным составом из гафния, азота и углерода (HF-N-C) будет иметь температуру плавления более 4400 К, что на 200 К выше, чем экспериментальный результат. Проведенные расчеты показывают, что оптимальный состав материала из гафния, азота и углерода - HfN 0.38 C 0.51 . Следующим шагом исследователей станет синтез материала для подтверждения выводов лаборатории.

"Преимуществом вычислительного подхода является то, что можно с небольшими затратами посмотреть много различных комбинаций и найти те, которые стоят эксперимента в лаборатории," - сказал Аксель ван де Валле, соавтор исследования.

Исследователи использовали вычислительный метод, при котором температура плавления рассчитывается путем моделирования физических процессов на атомном уровне, следуя закону квантовой механики. Динамика плавления изучается на наноуровне, в блоках около 100 атомов. Исследователи начали с анализа материала HF-Та-C, для которого точка плавления уже определена экспериментально. Моделирование смогло прояснить некоторые из факторов, которые вносят вклад в способность материала выдерживать тепло.

Работа показала, что в HF-Та-С сочетается высокая теплота плавления (энергия выделяется или поглощается, когда он переходит из твердого состояния в жидкое) с небольшой разницей между энтропией твердой и жидкой фаз.

Затем исследователи использовали эти выводы для поиска соединений, которые могут максимально соответствовать таким требованиям. Они обнаружили, что соединение гафния, азота и углерода будет иметь аналогичную высокую температуру плавления, но меньшую разницу между энтропией твердого вещества и жидкости. Когда они рассчитали точку плавления, она получилась на 200 К выше, чем получена в эксперименте для HF-Та-C.

Температуры плавления Та-HF-C-N сплавов. Закрашенные кружки обозначают рассчитанные температуры плавления в системах HF-C и Hf-C-N, а незакрашенные кружки показывают данные для системы Та-HF-C для сравнения.

Работа в конечном итоге может указать на новые высококачественные материалы для различных применений, от покрытий для газовых турбин до деталей высокоскоростных самолетов. Станет или нет этим новым материалом HfN 0.38 C 0.51 пока не ясно, говорят исследователи.

Как известно, самый легкоплавкий металл – это ртуть, которую причислили к числу металлов сразу после подтверждения того, что она обладает электропроводностью, как в жидкой, так и в твердой форме.

За звание самого легкоплавкого из металлов мог бы «побороться» франций, однако он является редким металлом, который к тому же невозможно хорошо изучить из-за его высокой радиоактивности. О самом легкоплавком материале мы знаем, а какой металл самый тугоплавкий? Таковым является вольфрам.

Как был открыт данный металл?

Самый тугоплавкий металл в мире открыл ученый из Швеции К.В.Шееле (в 1781г.). Ему удалось синтезировать триокись вольфрама (именно так и был назван наиболее легкий из металлов), растворив руду в азотной кислоте. Пару лет спустя чистейший металл был получен химиками из Испании – Ф.Фермином и Х.Хосе де Элюаром, которые выделили его из вольфрамита. Однако в те времена данное открытие не особо впечатлило человечество, а все потому, что не существовало нужных технологий для обработки полученного металла.


Где применяется вольфрам?

Широко используют соединения вольфрама. Их применяют в машиностроительной и горнодобывающей промышленностях, для бурения скважин. Из данного металла благодаря его высокой прочности и твердости изготавливают детали двигателей летательных аппаратов, нити накаливания, артиллерийские снаряды, сверхскоростные роторы гироскопов, пули и т.д. Также вольфрам успешно применяется как электрод при аргонно-дуговой сварке. Не обходятся и такие отрасли промышленности без соединений вольфрама – текстильная, лакокрасочная.


Технология производства

Поскольку «чистый» вольфрам встретить в природе нельзя (он является составной частью горных пород), то необходима процедура по выделению данного металла. Причем ученые оценивают содержание его в коре Земли так – на 1000 кг породы всего 1,3 грамма вольфрама. Можно отметить, что самый тугоплавкий металл, является довольно редким элементом, если сравнить его с известными видами металлов.

Когда из недр Земли добывается руда, то количество вольфрама в ней составляет только лишь до двух процентов. По этой причине добываемое сырье идет на обогатительные заводы, где специальными способами массовую долю металла приводят к шестидесяти процентам. При получении «чистого» вольфрама процесс делится на несколько технологических этапов. Первый заключается в выделении чистого триоксида из добытого сырья. Для данной цели используется термическое разложение, когда самая высокая температура плавления металла составляет от 500 до 800 градусов. При данном температурном режиме лишние элементы поддаются плавлению, а из расплавленной массы собирается оксид вольфрама.


Далее получившееся соединение проходит этап тщательного измельчения, а затем осуществляется восстановительная реакция. Для этого добавляется водород и используется температура в 700 градусов. В результате получается чистый металл, который имеет порошкообразный вид. Затем идет процесс спрессовывания порошка, для чего применяют высокое давление, и спекания в среде из водорода, где температурный режим составляет 1200-1300 градусов.


Получившуюся массу отправляют в специальную печь для плавления, где масса нагревается электрическим током до отметки более 3000 градусов. То есть вольфрам получается жидким после плавления. Затем масса очищается от примесей и создается монокристаллическая ее решетка. Для этого используют способ зонной плавки – его суть состоит в том, что расплавленной на некотором промежутке времени является лишь часть металла. Этот метод позволяет осуществлять процесс перераспределения примесей, который скапливаются на одном участке, откуда их легко убрать из общей структуры сплава. Необходимый вольфрам имеет вид слитков, которые и применяются для производства необходимых видов продукции в разных отраслях деятельности.

С древних времен человек научился обрабатывать и использовать в своей жизни металлы. Какие-то из них подходят для изготовления посуды и других товаров народного потребления, из других, например нержавеющая сталь, делают оружие и медицинские инструменты. А некоторые металлы и сплавы используются для строительства сложных технических механизмов, например космический корабль или самолет. Одной из характеристик, на которую обращают внимание при выборе того или иного материала, является его тугоплавкость.

Тугоплавкость металлов

Внимание этой характеристике уделяют все инженеры и конструкторы, работающие в машиностроении. В зависимости от величины этой характеристики, человек может рассчитать и определить в какую конструкцию можно применить те или иные тугоплавкие материалы.

Материалы, температура плавления который выше температуры плавления железа, равной 1539 °С, называются тугоплавкими. Самые тугоплавкие материалы:

  • тантал;
  • ниобий;
  • молибден;
  • рений;
  • вольфрам.



Полный список содержит больше химических элементов, но не все из них получили распространенное применение в производстве и некоторые обладают меньшими температурами плавления или радиоактивны.

Вольфрам – самый тугоплавкий металл. На вид он светло-серого цвета, твердость и вес достаточно велики. Однако, он становится хрупким при низких температурах и его легко сломать (хладноломкость). Если нагреть вольфрам больше 400 °С, он станет пластичным. С другими веществами вольфрам плохо соединяется. Добывают его из сложных и редких минералов руд, таких как:

  • шеелит;
  • ферберит;
  • вольфрамит;
  • гюбнерит.

Переработка руды очень сложный и дорогостоящий процесс. Извлеченный материал формируют в бруски или готовые детали.

Вольфрам был открыт в XVIII веке, но долгое время не существовало печей, способных нагреваться до температуры плавления этого тугоплавкого металла. Ученые провели множество исследований и подтвердили, что вольфрам самый тугоплавкий металл. Стоит отметить, что по одной из теорий, сиборгий имеет большую температуру плавления, но не удается провести достаточное количество исследований, т.к. он радиоактивен и нестабилен.

Добавление вольфрама в сталь увеличивает ее твердость, поэтому его стали применять в изготовлении режущего инструмента, что увеличило скорость резания и тем самым привело к росту производства.

Высокая стоимость и трудность обработки этого тугоплавкого металла сказываются на сферах его применения. Он используется в тех случаях, когда нет возможности применить другой. Его достоинства:

  • устойчив к высоким температурам;
  • повышенная твердость;
  • прочный или упругий при определенных температурах;

Все эти характеристики помогают вольфраму найти широкое применение в различных сферах, таких как:

  • металлургия, для легированных сталей;
  • электротехника, для нитей накаливания, электродов и др.;
  • машиностроение, в изготовлении узлов зубчатых передач и валов, редукторов и многом другом;
  • авиационное производство, в изготовлении двигателей;
  • космическая отрасль, применяется в соплах ракет и реактивных двигателях;
  • военно-промышленный комплекс, для бронебойных снарядов и патронов, брони военной техники, в устройстве торпед и гранат;
  • химическая промышленность, вольфрам обладает хорошей коррозийной стойкостью к действию кислот, поэтому из него делают сетки для фильтров. Кроме того соединения с вольфрамом используют в качестве красителей тканей, в производстве одежды для пожарных и многом другом.

Такой перечень отраслей, где используется этот тугоплавкий металл говорит о том, что его значение для человечества очень велико. Ежегодно по всему миру изготавливают десятки тысяч тон чистого вольфрама и с каждым годом потребность в нем растет.

Получение тугоплавких материалов

Основная трудность, встречающаяся при получении тугоплавких металлов и сплавов, это их высокая химическая активность, которая мешает быть элементу в чистом виде.

Наиболее распространенной технологией получения считается порошковая металлургия. Существует несколько способов получить порошок тугоплавкого металла.

  1. Восстановление с помощью триоксида водорода. Такой метод включает в себя несколько этапов, оборудование для обработки — это многотрубные печи, с диапазоном температур от 750 до 950 °С. Данный способ применяется для получения молибдена и вольфрама.
  2. Восстановление водородом из перрената аммония. При температуре около 500 °С, на заключительном этапе, полученный порошок, отделяют от щелочей с помощью кислот и воды. Применяется для получения рения.
  3. Соли различных металлов также применяются для получения порошка молибдена. Например, используют соль аммония металла и его порошок не более 15% от общей массы. Смесь нагревается до 500-850 °С при помощи инертного газа, а затем технология производства предусматривает провести восстановление водородом при температуре 850 — 1000 °С.

Полученный этими способами порошок в дальнейшем подвергают к спеканию в специальные формы, для дальнейшей транспортировки и хранения.

На сегодняшний день, эти способы получения чистых тугоплавких металлов продолжают дорабатываться и применяются новые техники извлечения материала из горных пород. С развитием ядерной энергетики, космической отрасли, металлургии, мы в скором времени сможем наблюдать появление новых методов, возможно более дешевых и простых.

Применение тугоплавких материалов

Сферы, в которых применяются тугоплавкие металлы и сплавы:

  • авиация;
  • ракетостроение;
  • электроника;
  • космический и военный комплекс.

Объединяет все эти сферы использование новейших технологий и процессов. В основном используются в электрических приборах, лампах, электродах, катодах, предохранителях и многом другом.



Нашли они свое применение и в ядерной энергетике. Тугоплавкие металлы применяют для производства труб ядерных реакторов, оболочек и других элементов АЭС.

В химической промышленности нашли свое применение вольфрам, для окраски тканей, и тантал, антикоррозионные свойства которого применяются при изготовлении посуды и аппаратуры.

Использование тугоплавких металлов в составе прокатных сталей усиливает определенные свойства тех. Это способствует увеличению прочности, температуре плавления и многим другим свойствам.

Ежегодно выпускается миллионы тонн тугоплавких металлов по всему миру. Они используются в составе различных сплавов и сталей. Без них невозможно изготовить качественный инструмент и материал. Развитие военно-промышленного комплекса, самолетостроения, кораблестроения, создание космических кораблей, безопасность в атомной промышленности невозможна без их применения.

Что еще почитать