Так ли просто засунуть человека в банку или об устройстве пилотируемых космических кораблей. Как космические корабли бороздят звездные просторы Как устроен космический корабль

Введение

Из курса физики я узнала, что для того чтобы тело стало искусственным спутником Земли, ему нужно сообщить скорость равную 8 км/с (I космическая скорость). Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет спутником Земли, обращающимся вокруг нее по круговой орбите.

Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников!

А для того чтобы достичь других планет космическому кораблю необходимо сообщить II космическую скорость, это около 11, 6 км/с! Например чтобы достичь Марса, что в скором времени собираются сделать американцы, нужно лететь с такой огромной скоростью более восьми с половиной месяцев! И это не считая обратной дороги на Землю.

Каким же должно быть устройство космического корабля, чтобы достичь таких огромных, невообразимых скоростей?! Данная тема меня сильно заинтересовала, и я решила узнать все тонкости конструкции космических кораблей. Как оказалось, задачи практического конструирования вызывают в жизни новые формы летательных аппаратов и требуют разработки новых материалов, которые в свою очередь создают новые проблемы и выявляют много интересных аспектов старых проблем как в области фундаментальных, так и в области прикладных исследований.

Материалы

Основу развития техники составляют знания о свойствах материалов. Во всех космических аппаратах используются разнообразные материалы в самых различных условиях.

В последние несколько лет резко возросло количество изучаемых материалов и представляющих для нас интерес характеристик. Быстрый рост количества технических материалов, используемых при создании космических кораблей, а также возрастающая взаимозависимость конструкций космических кораблей и свойств материалов иллюстрируются табл. 1. В 1953 г. алюминий, магний, титан, сталь и специальные сплавы представляли интерес в первую очередь как авиационные материалы. Пять лет спустя, в 1958 г., они получили широкое применение в ракетостроении. В 1963 г. каждая из указанных групп материалов включала уже сотни комбинаций элементов или составных частей, а количество представляющих интерес материалов увеличилось на несколько тысяч. В настоящее время почти везде нужны новые и усовершенствованные материалы, и вряд ли положение изменится в будущем.

Таблица 1

Материалы, используемые в конструкциях космических аппаратов

Материал

Бериллий

Материалы, обеспечивающие регулирование теплового режима

Термоэлектрические материалы

Фотоэлектрические материалы

Защитные покрытия

Керамика

Материалы, армированные нитями

Уносимые покрытия (абляционные материалы)

Слоистые материалы

Полимеры

Тугоплавкие металлы

Специальные сплавы

Титановые сплавы

Магниевые сплавы

Алюминиевые сплавы

Потребность в новых знаниях в области материаловедения и технологии материалов находит отклик в наших университетах, частных компаниях, независимых исследовательских организациях и различных правительственных органах. Табл.2 дает некоторое представление о характере и масштабах исследований, проводимых НАСА в области разработки новых материалов. Эти работы включают как фундаментальные, так и прикладные исследования. Наибольшие усилия сосредоточены в области фундаментальных исследований по физике твердого тела и химии. Здесь представляют интерес атомное строение материи, межатомные силовые взаимодействия, движение атомов и особенно влияние дефектов, соизмеримых с размерами атомов.

Таблица 2

Программа исследования материалов

К следующей категории относятся конструкционные материалы с большой удельной прочностью, как титан, алюминий и бериллий, теплостойкие и тугоплавкие сплавы, керамика и полимеры. К особой группе следует отнести материалы для сверхзвуковой транспортной авиации.

В программе НАСА постоянно возрастает интерес к категории материалов, используемых в электронике. Ведутся исследования сверхпроводников и лазеров. В группе полупроводников изучаются как органические, так и неорганические материалы. Ведутся также исследования в области термоэлектроники.

И наконец, программа исследования материалов завершается рассмотрением с весьма общих позиций вопросов практического использования материалов.

Чтобы показать потенциальные возможности применения результатов исследования материалов в будущем, я остановлюсь на исследованиях, связанных с изучением влияния пространственного расположения атомов на фрикционные свойства металлов.

Если бы удалось уменьшить трение между соприкасающимися металлическими поверхностями, то это позволило бы усовершенствовать практически все типы механизмов с подвижными частями. В большинстве случаев трение между соприкасающимися поверхностями велико, и чтобы его снизить, применяется смазка. Однако понимание механизма трения между несмазанными поверхностями также представляет большой интерес.

На рис.1 представлены некоторые результаты исследований, проведенных в Льюисском исследовательском центре. Эксперименты проводились в условиях глубокого вакуума, так как атмосферные газы загрязняют поверхности и резко изменяют их фрикционные свойства. Первый важный вывод состоит в том, что фрикционные характеристики чистых металлов в сильной степени зависят от их естественной атомной структуры (см. левую часть рис.1). При затвердевании металлов атомы одних образуют гексагональную пространственную решетку, а атомы других - кубическую. Было показано, что металлы с гексагональной решеткой обладают гораздо меньшим трением, чем металлы с кубической решеткой.

Рис 1. Влияние атомной структуры на сухое трение (без смазки).

Рис.2. Требования к теплостойким материалам.

Приборная панель корабля «Восток-1» Ю. А. Гагарина. Центральный Музей Вооруженных Сил, Москва

Общая масса космического корабля достигала 4,73 тонны, длина (без антенн) - 4,4 м, а максимальный диаметр - 2,43 м.

Корабль состоял из сферического спускаемого аппарата (массой 2,46 тонны и диаметром 2,3 м) также выполняющего функции орбитального отсека и конического приборного отсека (массой 2,27 тонны и максимальным диаметром 2,43 м). Масса теплозащиты от 1.3 тонны до 1.5 тонн. Отсеки механически соединялись между собой при помощи металлических лент и пиротехнических замков. Корабль оснащался системами: автоматического и ручного управления, автоматической ориентации на Солнце, ручной ориентации на Землю, жизнеобеспечения (рассчитаной на поддержание внутренней атмосферы, близкой по своим параметрам к атмосфере Земли в течение 10 суток), командно-логического управления, электропитания, терморегулирования и приземления. Для обеспечения задач по работе человека в космическом пространстве корабль снабжался автономной и радиотелеметрической аппаратурой для контроля и регистрации параметров, характеризующих состояние космонавта, конструкции и систем, ультракоротковолновой и коротковолновой аппаратурой для двусторонней радиотелефонной связи космонавта с наземными станциями, командной радиолинией, программно-временным устройством, телевизионной системой с двумя передающими камерами для наблюдения за космонавтом с Земли, радиосистемой контроля параметров орбиты и пеленгации корабля, тормозной двигательной установкой ТДУ-1 и другими системами.

Вес космического корабля вместе с последней ступенью ракеты-носителя составлял 6,17 тонны, а их длина в связке - 7,35 м.

При разработке спускаемого аппарата конструкторами была выбрана осесимметричная сферическая форма, как наиболее хорошо изученная и имеющая стабильные аэродинамические характеристики для всех диапазонов углов атаки на разных скоростях движения. Это решение позволяло обеспечить приемлемую массу тепловой защиты аппарата и реализовать наиболее простую баллистическую схему спуска с орбиты. В тоже время, выбор баллистической схемы спуска обуславливал высокие перегрузки, которые предстояло испытать человеку, работающему на борту корабля.

Спускаемый аппарат имел два иллюминатора, один из которых размещался на входном люке, чуть выше головы космонавта, а другой, оснащённый специальной системой ориентации, в полу у его ног. Космонавт одетый в скафандр, размещался в специальном катапультируемом кресле. На последнем этапе посадки, после торможения спускаемого аппарата в атмосфере, на высоте 7 км, космонавт катапультировался из кабины и совершал приземление на парашюте. Кроме того, была предусмотрена возможность приземления космонавта внутри спускаемого аппарата. Спускаемый аппарат имел собственный парашют, однако не был оснащён средствами выполнения мягкой посадки, что грозило оставшемуся в нём человеку серъёзным ушибом при совместном приземлении.



Аппаратура кораблей «Восток» была выполнена как можно более простой. Манёвр возвращения обычно обрабатывался по автоматической команде, передаваемой по радио с Земли. С целью горизонтальной ориентации корабля использовались инфракрасные датчики. Выравнивание вдоль оси орбиты выполнялось при помощи звёздных и солнечных датчиков ориентации.

В случае отказа автоматических систем космонавт мог перейти на ручное управление. Это было возможно за счёт использования оригинального оптического ориентатора «Взор», установленного на полу кабины. На иллюминаторе размещалась кольцевая зеркальная зона, а на специальном матовом экране были нанесены стрелки, указывающие направление смещения земной поверхности. Когда космический корабль был правильно сориентирован относительно горизонта все восемь визиров зеркальной зоны освещались солнцем. Наблюдение земной поверхности через центральную часть экрана («бег Земли») позволяло определить направление полёта.

Решить, когда следует начать манёвр возвращения космонавту помогал другой прибор - небольшой глобус с часовым механизмом, который показывал текущее положение корабля над Землёй. Зная исходную точку положения можно было с относительной точностью определить место предстоящей посадки.

Эта ручная система могла быть использована только на освещённой части орбиты. Ночью Земля не могла наблюдаться через «Взор». Автоматическая система ориентации должна была иметь возможность работать в любое время.



Корабли «Восток» не были приспособлены для полётов человека на Луну, а также не допускали возможности полёта людей не прошедших специальной подготовки. Во многом это обуславливалось конструкцией спускаемого аппарата корабля, ласково именуемого Шарик . Сферическая форма спускаемого аппарата не предусматривала использования двигателей ориентации. Аппарат походил на шар, основной вес которого был сконцентрирован в одной части, таким образом, при движении по баллистической траектории он автоматически разворачивался тяжёлой частью вниз. Баллистический спуск означал восьмикратную перегрузку при возвращении с земной орбиты и двадцатикратную при возвращении от Луны. Похожим баллистическим аппаратом была капсула «Меркурий»; корабли «Джемини», «Аполлон» и «Союз» благодаря своей форме и смещённому центру тяжести позволяли снизить испытываемые перегрузки (3 G для возвращения с околоземной орбиты и 8 G при возвращении с Луны), и обладали достаточной манёвренностью для изменения точки посадки.

Советские корабли «Восток» и «Восход» также, как американский «Меркурий» не умели выполнять орбитальные манёвры, допуская лишь выполнение поворотов относительно основных осей. Повторный запуск двигательной установки не предусматривался, она использовалась лишь с целью выполнения возвратного тормозного манёвра. Тем не менее, Сергей Павлович Королёв перед началом разработки «Союза» рассматривал возможность создания манёвренного «Востока». Этот проект подразумевал стыковку корабля со специальными разгонными модулями, что в перспективе позволяло использовать его в задаче по облёту Луны. Позднее идея манёвренной версии корабля «Восток» была реализована в разведывательных спутниках «Зенит» и специализированных спутниках «Фотон».

Космический корабль. Наверняка многие из вас, услышав это словосочетание, представляют себе нечто огромное, сложное и густонаселенное, целый город в космосе. Так когда-то представлял себе космические корабли и я, да и многочисленные фантастические фильмы и книги этому активно способствуют.

Наверное, это хорошо, что авторов фильмов ограничивает только фантазия в отличие от инженеров-конструкторов космической техники. Хотя бы в кино мы можем насладиться гигантскими объемами, сотнями отсеков и тысячами человек экипажа...

Настоящий космический корабль размерами вовсе не впечатляет:

На фотографии советский космический корабль Союз-19, снятый американскими астронавтами из корабля Аполлон. Видно, что корабль довольно маленький, а учитывая, что обитаемый объем занимает далеко не весь корабль, очевидно, что там должно быть довольно тесно.

Оно и не удивительно: большие размеры - это большая масса, а масса - враг номер один в космонавтике. Поэтому конструкторы космических кораблей стараются сделать их как можно легче, нередко, в ущерб комфорту экипажа. Обратите внимание, как тесно в корабле Союз:

Американские корабли в этом плане особо не отличаются от русских. Например, вот фотография Эда Уайта и Джима Мак-Дивита в космическом корабле Джемини.

Хоть какой-то свободой передвижений могли похвастаться разве что экипажи кораблей Спейс Шаттл. В их распоряжении были два относительно просторных отсека.

Полетная палуба (фактически кабина управления):

Средняя палуба (это бытовой отсек со спальными местами, туалетом, кладовой и шлюзовой камерой):

Аналогичный по габаритам и планировке советский корабль Буран, к сожалению, ни разу не летал в пилотируемом режиме, как и ТКС, который до сих пор обладает рекордным обитаемым объемом среди всех когда-либо проектировавшихся кораблей.

Но обитаемый объем - далеко не единственное требование, предъявляемое космическому кораблю. Доводилось мне слышать высказывания наподобие такого: "Засунули человека в алюминиевую банку и отправили крутиться вокруг Земли-матушки". Данная фраза, конечно же, некорректна. Так чем же космический корабль отличается от простой металлической бочки?

А тем, что космический корабль должен:
- Обеспечивать экипажу пригодную для дыхания газовую смесь,
- Удалять из обитаемого объема выдыхаемые экипажем углекислый газ и пары воды,
- Обеспечивать приемлемый для экипажа температурный режим,
- Иметь герметичный объем, достаточный для жизнедеятельности экипажа,
- Обеспечивать возможность управления ориентацией в пространстве и (опционально) возможность осуществления орбитальных маневров,
- Иметь необходимые для жизнедеятельности экипажа запасы пищи и воды,
- Обеспечивать возможность безопасного возврата экипажа и грузов на землю,
- Быть как можно легче,
- Иметь систему аварийного спасения, позволяющую вернуть экипаж на землю при аварийной ситуации на любом этапе полета,
- Быть очень надежным. Любой один отказ оборудования не должен приводить к отмене полета, любой второй отказ не должен угрожать жизни экипажа.

Как видите, это уже не простая бочка, а сложный технологичный аппарат, напичканный множеством разнообразной аппаратуры, имеющий двигатели и запас топлива к ним.

Вот для примера макет советского космического корабля первого поколения Восток.

Он состоит из герметичной сферической капсулы и конического приборно-агрегатного отсека. Такую компоновку, при которой большинство приборов вынесено в отдельный негерметичный отсек, имеют почти все корабли. Это необходимо для экономии массы: при размещении всех приборов в герметичном отсеке, этот отсек получился бы довольно большим, а поскольку ему нужно удерживать внутри себя атмосферное давление и выдерживать значительные механические и тепловые нагрузки во время входа в плотные слои атмосферы при спуске на землю, стенки его должны быть толстыми, прочными, что делает всю конструкцию очень тяжелой. А негерметичному отсеку, который при возврате на землю отделится от спускаемого аппарата и сгорит в атмосфере, прочные тяжелые стенки не нужны. Спускаемый аппарат без лишних при возврате приборов получается меньше и соответственно легче. Сферическая форма ему придается тоже для уменьшения массы, ведь из всех геометрических тел одинакового объема сфера имеет самую маленькую площадь поверхности.

Единственный космический корабль, где вся аппаратура была помещена в герметичную капсулу, - американский Меркурий. Вот его фото в ангаре:

В этой капсуле мог поместиться один человек и то с трудом. Поняв неэффективность такой компоновки, американцы свою следующую серию кораблей Джемини делали уже с отделяемым негерметичным приборно-агрегатным отсеком. На фотографии это задняя часть корабля белого цвета:

Кстати, в белый цвет этот отсек покрашен не просто так. Дело в том, что стенки отсека пронизаны множеством трубок, по которым циркулирует вода. Это система отвода избыточного тепла, получаемого от Солнца. Вода забирает тепло изнутри обитаемого отсека и отдает его на поверхность приборно-агрегатного отсека, откуда тепло излучается в пространство. Чтобы эти радиаторы меньше грелись под прямыми солнечными лучами, их покрасили в белый цвет.

На кораблях Восток радиаторы были расположены на поверхности конического приборно-агрегатного отсека и закрывались заслонками, похожими на жалюзи. Открывая разное количество заслонок, можно было регулировать теплоотдачу радиаторов, а значит и температурный режим внутри корабля.

На кораблях Союз и их грузовых аналогах Прогресс система отвода тепла аналогична Джемини. Обратите внимание на цвет поверхности приборно-агрегатного отсека. Разумеется, белый:)

Внутри приборно-агрегатного отсека расположены маршевые двигатели, маневровые двигатели малой тяги, запас топлива для всего этого добра, аккумуляторы, запасы кислорода и воды, часть бортовой электроники. Снаружи обычно устанавливают антенны радиосвязи, антенны сближения, различные датчики ориентации и солнечные батареи.

В спускаемом аппарате, который одновременно служит кабиной космического корабля, расположены только те элементы, которые нужны при спуске аппарата в атмосфере и мягкой посадки, а также то, что должно быть в прямом доступе для экипажа: пульт управления, радиостанция, аварийный запас кислорода, парашюты, кассеты с гидроксидом лития для удаления углекислого газа, двигатели мягкой посадки, ложементы (кресла для космонавтов), аварийно-спасательные комплекты на случай приземления в нерасчетной точке, ну и, разумеется, сами космонавты.

В кораблях Союз есть еще один отсек - бытовой:

В нем находится то, что нужно в длительном полете, но без чего можно обойтись на этапе выведения корабля на орбиту и при приземлении: научные инструменты, запасы пищи, Ассенизационно-санитарное устройство (туалет), скафандры для внекорабельной деятельности, спальные мешки и прочие бытовые предметы.

Известен случай с космическим кораблем Союз ТМ-5, когда для экономии топлива бытовой отсек отстрелили не после выдачи тормозного импульса на сход с орбиты, а до. Только вот тормозного импульса не было: отказала система ориентации, потом не удавалось запустить двигатель. В результате космонавтам пришлось еще на сутки задержаться на орбите, а туалет остался в отстреленном бытовом отсеке. Сложно передать, какие неудобства испытали космонавты за эти сутки, пока, наконец, им не удалось благополучно приземлиться. После этого случая решили забить на такую экономию топлива и бытовой отсек отстреливать вместе с приборно-агрегатным после торможения.

Вот, сколько всяких сложностей оказалось в "банке". Мы еще отдельно пройдемся по каждому типу космических кораблей СССР, США и Китая в следующих статьях. Следите за обновлениями.

Косцов Матвей

Участник городских научных чтений детей младшего школьного возраста секции "Мир космоса". Ученик рассказывает об устройстве космических кораблей "Восток", "Восход" и "Союз".

Скачать:

Предварительный просмотр:

Городские научные чтения детей младшего школьного возраста

Секция «Мир Космоса»

Тема: «Устройство космических кораблей»

Класс 3 Б МБОУ-гимназии № 2

Научный руководитель Мосолова Г.В., учитель начальных классов

Тула 2013 г.

Введение

Меня очень интересует устройство космических кораблей. Во-первых, потому, что это большой и сложный аппарат, над созданием которого трудится много ученых и инженеров. Во-вторых, корабль на несколько часов или даже суток становится домом для космонавта, где необходимы нормальные человеческие условия – космонавт должен дышать, пить, есть, спать. В процессе полета космонавту требуется по своему усмотрению разворачивать корабль и менять орбиту, то есть корабль при движении в пространстве должен легко управляться. В-третьих, в будущем я бы сам хотел конструировать космические корабли.

Космический корабль предназначен для полетов в космическое пространство одного или нескольких человек и безопасного возвращения на Землю после исполнения задания.

Технические требования к космическому кораблю более жесткие, чем к любым другим космическим аппаратам. Условия полета (перегрузки, температурный режим, давление и т.п.) должны выдерживаться для них очень точно, дабы не создалась угроза жизни человека.

Важная особенность пилотируемого космического корабля – наличие системы аварийного спасения.

Только в России, США и Китае созданы пилотируемые космические корабли, так как эта задача высокой сложности и стоимости. А многоразовые системы пилотируемых космических кораблей имеют только Россия и США.

В данной работе я попытался рассказать об устройстве космических кораблей «Восток», «Восход» и «Союз».

«Восток»

Серия советских космических кораблей «Восток» предназначена для пилотируемых полётов по околоземной орбите. Создавались они под руководством генерального конструктора Сергея Павловича Королёва с 1958 по 1963 год.

Первый пилотируемый полет космического корабля «Восток» с Ю.А. Гагариным на борту состоялся 12 апреля 1961 г., это был первый в мире космический аппарат, позволивший осуществить полёт человека в космос.

Основные научные задачи, стоявшие для корабля «Восток»: изучение воздействий условий орбитального полёта на состояние и работоспособность космонавта, отработка конструкции и систем, проверка основных принципов построения космических кораблей.

Общая масса космического корабля – 4,73 тонны, длина – 4,4 м, максимальный диаметр – 2,43 м.

Корабль состоял из сферического спускаемого аппарата (массой 2,46 тонны и диаметром 2,3 м), также выполняющего функции орбитального отсека и конического приборного отсека. Отсеки механически соединялись между собой при помощи металлических лент и пиротехнических замков. Корабль оснащался системами: автоматического и ручного управления, автоматической ориентации на Солнце, ручной ориентации на Землю, жизнеобеспечения, командно-логического управления, электропитания, терморегулирования и приземления. Для обеспечения задач по работе человека в космическом пространстве корабль снабжался автономной и радиотелеметрической аппаратурой для контроля и регистрации параметров, характеризующих состояние космонавта, конструкции и систем, ультракоротковолновой и коротковолновой аппаратурой для двусторонней радиотелефонной связи космонавта с наземными станциями, командной радиолинией, программно-временным устройством, телевизионной системой с двумя передающими камерами для наблюдения за космонавтом с Земли, радиосистемой контроля параметров орбиты и пеленгации корабля, тормозной двигательной установкой ТДУ-1 и другими системами. Вес космического корабля вместе с последней ступенью ракеты-носителя составлял 6,17 тонны, а их длина в связке – 7,35 м.

Спускаемый аппарат имел два иллюминатора, один из которых размещался на входном люке, чуть выше головы космонавта, а другой, оснащённый специальной системой ориентации, в полу у его ног. Космонавт, одетый в скафандр, размещался в специальном катапультируемом кресле. На последнем этапе посадки, после торможения спускаемого аппарата в атмосфере, на высоте 7 км, космонавт катапультировался из кабины и совершал приземление на парашюте. Кроме того, была предусмотрена возможность приземления космонавта внутри спускаемого аппарата. Спускаемый аппарат имел собственный парашют, однако не был оснащён средствами выполнения мягкой посадки, что грозило оставшемуся в нём человеку серьёзным ушибом при совместном приземлении.

В случае отказа автоматических систем космонавт мог перейти на ручное управление. Корабли «Восток» не были приспособлены для полётов человека на Луну, а также не допускали возможности полёта людей, не прошедших специальной подготовки.

«Восход»

Многоместные космические корабли «Восход» осуществляли полёты на околоземной орбите. Эти корабли фактически повторяли корабли серии «Восток» и состояли из сферического спускаемого аппарата диаметром 2,3 метра, в котором размещались космонавты, и конического приборного отсека (массой 2,27 т., длиной 2,25 м и шириной 2,43 м.), в котором находились топливные баки и двигательная установка. В корабле «Восход-1» космонавты для экономии места располагались без скафандров. В первый космический экипаж входил конструктор спускаемых аппаратов Константин Феоктистов.

«Союз»

«Союз» – серия многоместных космических кораблей для полетов по околоземной орбите.

Ракетно-космический комплекс «Союз» начал проектироваться в 1962 г. как корабль советской программы для облёта Луны.

Корабли этой серии состоят из трёх модулей: приборно-агрегатного отсека, спускаемого аппарата, бытового отсека.

Система энергоснабжения состоит из солнечных батарей и аккумуляторов.

В спускаемом аппарате находятся места для космонавтов, системы жизнеобеспечения, управления, парашютная система. Длина отсека 2,24 м, диаметр 2,2 м. Бытовой отсек имеет длину 3,4 м, диаметр 2,25 м.

Заключение

На космических кораблях используются все лучшие наисовременнейшие разработки человечества, новейшие передовые технологии и бортовое оборудование.

На смену «Востокам», «Восходам» и «Союзам» пришли более совершенные орбитальные станции нового поколения и новых возможностей.

Они открыли еще одну страницу в истории не только российской, но и мировой космонавтики, объединили космонавтов многих стран.

Позже появились «Шаттлы», «Бураны» и другие космические корабли, но основой для разработок современных летательных аппаратов послужили именно эти три, описанные в моей работе.

Я очень надеюсь, что, когда вырасту, тоже смогу создать или помочь в создании нового сверхсовременного космического корабля, который долетит до очень далеких галактик.

Список используемой литературы

  1. Энциклопедический словарь юного астронома. Москва. 2006 г. Составитель Ерпылев Н.П.;
  2. Энциклопедия для детей. Космонавтика. Москва. 2010 г.
  3. Великие подвиги. Серия «Энциклопедия открытий и приключений». Москва. 2008 г.

Сегодня стартовала Всемирная неделя космоса. Проводится она ежегодно с 4 по 10 октября. Ровно 60 лет назад на околоземную орбиту вывели первый рукотворный объект советский «Спутник-1». Он вращался вокруг Земли 92 дня, пока не сгорел в атмосфере. После этого открылась дорога в космос и человеку. Стало понятно, что его нельзя отправлять с билетом в один конец. Как развивались космические технологии, узнал корреспондент телеканала «МИР 24» Владимир Сероухов.

В 1961 году саратовские зенитчики засекли на радаре неопознанный летающий объект. Их заранее предупредили: если они увидят такой падающий с неба контейнер, мешать его полету не стоит. Ведь это первый в истории космический спускаемый аппарат с человеком на борту. Но приземляться в этой капсуле было небезопасно, поэтому на высоте 7 километров катапультировался и спустился на поверхность уже с парашютом.

Капсула корабля «Восток», на сленге инженеров - «Шарик», тоже спустилась на парашюте. Так на Землю вернулись Гагарин, Терешкова и другие первопроходцы космоса. Из-за особенностей конструкции пассажиры испытывали невероятные перегрузки в 8 g. Гораздо легче условия в капсулах «Союз». Их используют более полувека, но в скоро должны заменить новым поколением кораблей - .

«Это кресло командира экипажа и второго пилота. Как раз те места, с которых будет выполняться управление кораблем, контроль всех систем. Кроме этих кресел по бокам будут еще два кресла. Это уже для исследователей», - рассказывает заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

По сравнению с семейством кораблей «Союз», которые все-таки морально устарели, и где в тесноте могли разместиться лишь трое космонавтов, капсула «Федерации» - настоящие апартаменты, 4 метра в диаметре. Сейчас главная задача - понять насколько удобен и функционален будет аппарат для экипажа.

Управление теперь доступно двум членам экипажа. Пульт шагает в ногу со временем - это три сенсорных дисплея, где можно контролировать информацию и быть более автономным на орбите.

«Вот для того, что бы выбрать место посадки, куда мы можем сесть. Мы непосредственно видим карту, трассу полета. Погодные условия они также могут контролировать, если эта информация будет передана с Земли, - отметил заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

«Федерация» рассчитана для полетов на Луну, это около четырех суток пути в одну сторону. Все это время космонавты должны находиться в позе эмбриона. В спасательных креслах, или ложементах удивительно удобно. Каждое - ювелирная работа.

«Измерение всех антропометрических данных начинается с измерения массы», - указал начальник сектора медицинского отдела НПП «Звезда» Виктор Синигин.

Вот оно - космическое ателье, предприятие «Звезда». Здесь для космонавтов делают индивидуальные скафандры и ложементы. Людям легче 50 килограммов путь на борт заказан, как и тем, кто тяжелее 95. Рост тоже должен быть средним, чтобы уместиться в салоне корабля. Поэтому и мерки снимают в позе эмбриона.

Так отливали кресло для японского космонавта Коичи Ваката. Получили отпечаток таза, спины и головы. В условиях невесомости рост любого космонавта может увеличиться на пару сантиметров, так что ложемент делают с запасом. Он должен быть не просто комфортным, но и безопасным в случае жесткой посадки.

«Сама идея моделирования в том, что бы уберечь внутренние органы. Почки, печень они капсулированные. Если дать им возможность расшириться они могут порваться, как полиэтиленовый пакет с водой, упавший на пол», - пояснил Синигин.

Всего таким способом сделали 700 ложементов не только для россиян, но и для японцев, итальянцев и даже коллег из Штатов, которые работали на станциях «Мир» и МКС.

«Американцы на своем «Шаттле» везли наши ложементы и скафандры, которые мы для них делали, и другое спасательное снаряжение. Оставляли это все на станции, на случай аварийного покидания станции, но уже на нашем корабле», - рассказал ведущий инженер испытательного отдела НПП «Звезда» Владимир Масленников.

Отчалит в космос, когда ему подберут подходящий ракетоноситель. Это должно случиться уже через четыре года. Испытание даст отсчет новой эпохе космической эры.

Что еще почитать